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Abstract

Background: Stepped wedge trials (SWTs) can be considered as a variant of a clustered randomised trial, although in
many ways they embed additional complications from the point of view of statistical design and analysis. While the
literature is rich for standard parallel or clustered randomised clinical trials (CRTs), it is much less so for SWTs. The
specific features of SWTs need to be addressed properly in the sample size calculations to ensure valid estimates of
the intervention effect.

Methods: We critically review the available literature on analytical methods to perform sample size and power
calculations in a SWT. In particular, we highlight the specific assumptions underlying currently used methods and
comment on their validity and potential for extensions. Finally, we propose the use of simulation-based methods to
overcome some of the limitations of analytical formulae. We performed a simulation exercise in which we compared
simulation-based sample size computations with analytical methods and assessed the impact of varying the basic
parameters to the resulting sample size/power, in the case of continuous and binary outcomes and assuming both
cross-sectional data and the closed cohort design.

Results: We compared the sample size requirements for a SWT in comparison to CRTs based on comparable number
of measurements in each cluster. In line with the existing literature, we found that when the level of correlation within
the clusters is relatively high (for example, greater than 0.1), the SWT requires a smaller number of clusters. For low
values of the intracluster correlation, the two designs produce more similar requirements in terms of total number of
clusters. We validated our simulation-based approach and compared the results of sample size calculations to
analytical methods; the simulation-based procedures perform well, producing results that are extremely similar to the
analytical methods. We found that usually the SWT is relatively insensitive to variations in the intracluster correlation,
and that failure to account for a potential time effect will artificially and grossly overestimate the power of a study.

Conclusions: We provide a framework for handling the sample size and power calculations of a SWT and suggest
that simulation-based procedures may be more effective, especially in dealing with the specific features of the study
at hand. In selected situations and depending on the level of intracluster correlation and the cluster size, SWTs may be
more efficient than comparable CRTs. However, the decision about the design to be implemented will be based on a
wide range of considerations, including the cost associated with the number of clusters, number of measurements
and the trial duration.

Keywords: Stepped wedge design, Sample size calculations, Simulation-based methods

*Correspondence: g.baio@ucl.ac.uk
1Department of Statistical Science, University College London, Gower Street,
London, UK
Full list of author information is available at the end of the article

© 2015 Baio et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13063-015-0840-9-x&domain=pdf
mailto: g.baio@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Baio et al. Trials  (2015) 16:354 Page 2 of 15

Background
Sample size calculations for a trial are typically based on
analytical formulae [1], often relying on the assumption of
(approximate) normality of some test statistic used for the
analysis. In the case of cluster RCTs (CRTs), where clusters
rather than individuals are randomised, the outcomes for
participants within a cluster are likely to be more similar
than those between clusters.
The most common approach to computing the opti-

mal sample size for a CRT is to formally include some
form of variance inflation, often expressed in terms of a
design effect (DE) [2–7], the factor by which the sample
size obtained for an individual RCT needs to be inflated
to account for correlation in the outcome [8]. In the sim-
plest case, the DE is computed as a function of the number
of individuals in each cluster and the intracluster corre-
lation (ICC), which quantifies the proportion of the total
variance due to variation between the clusters. In prac-
tice, a preliminary size is computed as if the trial were an
individual RCT and the sample size is obtained by multi-
plying this by the DE, which thus quantifies the inflation
in the sample size resulting from the reduced amount of
information due to the lack of independence across the
observations. In the case of standard CRTs, there is a con-
siderable literature dealing with more complicated scenar-
ios, for example, when repeated measures are obtained
from individuals within the clusters [9]. Stepped wedge
trials (SWTs) are a variant of CRTs where all clusters
receive the intervention in a randomised order. They also
have additional features which need to be formally taken
into account in the sample size calculations, including:
the number of crossover points; the number of clusters
switching intervention arm at each time point; possible
time and/or lag effect, indicating that the intervention
effect may not be instantaneous; and the dynamic aspects
of the underlying population, for example, whether the
data are collected for a SWT in a cross-sectional man-
ner or they are repeated measurements on the same
individuals.
The available literature for sample size and power calcu-

lations for a SWT is much less rich than that on parallel
or cluster randomised trials. In addition to the risk of
bias and logistic challenges [10, 11], this is perhaps one
of the reasons for the limited development of trials based
on the SWT design, at least until very recent times [11].
Indeed, many SWT studies published between 1950 and
2010 did not report formal sample size calculations, and
for those which did, descriptions of the details were not
adequate [12, 13]. Nonetheless, some improvements have
been made over the last few years, and a number of
papers have been published on sample size calculations for
SWT. These include the pivotal paper published in 2007
by Hussey and Hughes (HH) [14], which provided both
analytic formulae and the results of a simulation exercise

for sample size calculations. Methods for the computa-
tion of DEs for a SWT have also been recently proposed
[15, 16].
Despite the recent increase in the number of published

trials using stepped wedge designs, a recent review on the
reporting of the conduct of SWTs [11] suggests only a
few studies mentioning the ICC and a justification for its
assumed value, which effect sizes were adopted and the
other assumptions on which the calculations were based.
Of the 38 studies identified in the review, 8 did not report
any form of sample size calculation (5 of these were only
based on trial registration) and 10 used formulae for par-
allel or cluster RCTs. Of those accounting for the stepped
wedge design, the most common method used was that
of HH [14], while only one study used the DE defined by
Woertman et al. [15], one used the method proposed by
Moulton et al. [16] and three used simulations to com-
pute the sample size. Of the 30 studies which reported a
sample size calculation, just 19 included the ICC, of which
only a few appeared to be based on previous research.
Given the often longitudinal nature of SWTs, it is surpris-
ing that only 9 accounted for possible drop-out. Moreover,
the sample size calculations did not always match the
methods of analysis undertaken, and although many of
the studies used repeated measures designs, adjusting for
covariates and assessing possible time by intervention
interactions effects, they did not take these into account
in the sample size calculations.
Existing guidance on sample size calculations for a SWT

is also limited by the fact that it has mainly focussed solely
on cross-sectional designs, ignoring the more complex
clustering which occurs in studies where repeated mea-
surements are taken from the same individuals [14–16].
For cross-sectional outcome data, these are assumed to
be measured at discrete times linked to the timing of the
‘steps’ (crossover points) in the design and it is assumed
that the analysis will include data from one crossover after
all clusters have changed to the intervention condition
and from one crossover before. Other typical assumptions
include equal cluster sizes, no intervention by time inter-
actions, no cluster-by-intervention effect and categorical
time effects (we return to this point later).
Very recently, Hemming et al. [17] have provided analyt-

ical formulae for power calculations for specific variations
on HH’s basic formulation. These include the case of
multiple levels of clustering, for example, an intervention
being implemented in wards within hospitals, and what
they term the ’incomplete’ SWT design, in which clus-
ters may not contribute data for some time periods, for
example, because of implementation periods in which the
clusters transition from the control to the intervention
arm, or to avoid excessive measurement burden. Never-
theless, as suggested in [18], to date reliable sample size
algorithms for more complex designs, such as those using
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cohorts rather than cross-sectional data, have not yet been
established.
The objective of this paper is to provide a critical review

of the analytical methods currently available for sample
size calculations for a SWT and to suggest the potential
extension of these closed-form methods to simulation-
based procedures, which may be more appropriate and
offer more flexibility in matching the complexity of the
model used for the analysis. We show the results of
a simulation study, comparing the performance of the
simulation-based approach to that of the closed-form
calculations, and finally give some recommendations on
when either procedure may be more accurate.

Methods
Analytical methods for sample size calculations in a
stepped wedge trial
Before we proceed, we note that since this is a method-
ological paper, no ethical approval was required for any
of the aspects we present and discuss in the following
sections. There are three main papers detailing the sam-
ple size requirements for a SWT. The first one is that of
HH, who proposed power calculations for stepped wedge
designs with cross-sectional data and investigated the
effect on power of varying several parameters. The basic
model considered by HH assumes I clusters, J crossover
points and K individuals sampled per cluster at each time
point. In the most basic formulation, the observed con-
tinuous response is then modelled as Yijk = μij + eijk ,
where

μij = μ + αi + βj + Xijθ

is the cluster- and time-specific mean, while eijk ∼
Normal(0, σ 2

e ) represent independent individual-level
error terms (within-cluster variability). Here, μ is the
overall intercept, αi ∼ Normal(0, σ 2

α ) are a set of cluster-
specific random effects, βj are fixed effects for time j, Xij
is an intervention indicator taking on the value 1 if cluster
i is given the active intervention at time j and 0 otherwise,
and θ is the intervention effect. This model implies that
the response Yijk is normally distributed with mean μij
and total variance σ 2

y = σ 2
α + σ 2

e , while the cluster-level

variance is σ 2
α+σ 2

e
K [1 + (K − 1)ρ], where ρ = σ 2

α

σ 2
α+σ 2

e
is the

ICC.
HH’s power calculations are based on the Wald test

statistic, computed as the ratio between the point estimate
of the intervention effect and its standard deviation. The
main complexity lies in the computation of the variance
of the estimator of the intervention effect; nevertheless, in
the relatively standard case considered by HH, this can be
expressed analytically as

V (θ) = Iσ 2(σ 2 + Jσ 2
α )

(IU − W )σ 2 + (U2 + IJU − JW − IV )σ 2
α

,

where σ 2 = σ 2
e
K , whileU = ∑

ij Xij,W = ∑
j
(∑

i Xij
)2 and

V = ∑
i

(∑
j Xij

)2
are all easily computable functions of

the design matrix. The within- and between-cluster varia-
tions are usually not known a priori, but similar to the case
of standard parallel or cluster RCTs, suitable estimates can
be plugged in, perhaps using information from previous
or pilot studies.
The power is computed as

Power = �

(
θ√
V (θ)

− zα/2

)

where � is the cumulative standard normal distribution
and zα/2 is its (1 − α/2)−th quantile. This formulation
assumes exchangeability across time within each cluster;
that is, the same correlation is assumed between indi-
viduals regardless of whether or not they are exposed to
the intervention or the control. Furthermore, the model
takes into account external time trends, but assumes they
are equal for all clusters. Incorporating such time effects
is necessary for SWTs, particularly for cases where the
outcome is likely to vary over time [19].
Drawing on asymptotic theory, HH’s calculations can be

easily extended to the case in which the outcome is not
normally distributed. Using HH’s calculations, Hemming
and Girling [20] have also written a Stata [21] routine
steppedwedge, which allows continuous, binary and
rate outcomes. The routine allows the specification of
the number of clusters randomised at each crossover, the
number of crossover points and the average cluster size.

Analytical sample size calculations based on design effects
As an alternative to HH’s formulation, some authors have
proposed sample size calculations based on the deriva-
tion of a design effect, an approach commonly used in
standard parallel CRTs. For example, Woertman et al.
[15] suggest the use of (what they term) a DE, based on
HH’s formulation. Their approach assumes that the out-
come measurements are obtained from each cluster at a
number of discrete time points and that the number of
participants measured at each of these crossover points
is the same across times and clusters. The formula to
compute the correction factor (CF) depends on the num-
ber of crossover points at which the clusters switch to
the intervention (J), the number of baseline measurement
times (B), the number of measurement times during each
crossover (T), the number of participants measured at
each time in each cluster (K) and the ICC ρ:

CF = 1 + ρ(JTK + BK − 1)
1 + ρ

( 1
2 JTK + BK − 1

) 3(1 − ρ)

2T
(
J − 1

J

) .
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The overall sample size in terms of participants (each
contributing one measurement) is then obtained as

n = nRCT × (B + JT) × CF

where nRCT is the sample size computed for a correspond-
ing parallel individual RCT without baseline data. Thus,
we note here that the correction factor cannot be consid-
ered as a DE in a conventional sense, and in fact the proper
formulation is

DEW = (B + JT) × CF.

The underlying assumptions behind this formulation
are similar to those used by HH, with the exceptions that
the same number of clusters switches at each crossover
and the number of measurements after each crossover
is constant. Because the calculation of this DE is based
on HH’s model, it applies only to cross-sectional settings,
so that each measurement is from a different individ-
ual participant. For example, measurements may arise
from sampling a small fraction of a large cohort at each
time point, or repeated cohorts of new individuals may
be exposed to intervention or control conditions at each
crossover and provide outcomemeasures at the end of the
crossover. However, Woertman et al. erroneously applied
their DE to a setup in which the same cohort of individuals
was observed repeatedly over time.
Often, in a SWT measurements are not obtained at

discrete times; for example, consider the commonly con-
ducted design termed a continuous recruitment short
period exposure design, in [22]. In such a design DEW
can be used by considering the cluster size K to be the
number of individuals recruited (that is, providing out-
come measurements) per cluster during each crossover,
setting T = 1 and B equal to the ratio of the number
of outcome measurements obtained before roll-out to the
number obtained during each subsequent crossover.
A similar methodology based on the computation of a

specific DE for a SWT was proposed by Moulton et al.
[16], specifically for survival data. Their DE considers the
case where the main analysis consists of comparisons of
the outcome for the clusters receiving the intervention to
those who have yet to receive it. Assuming that all the
clusters receive the intervention by the last time point J, in
this case the test is based on a log-rank statistic

Z =
∑J

j=1

[
d1j − Y 1

j

(
d∗
j

Y ∗
j

)]
√∑J

j=1
Y 1
j

Y ∗
j

(
1 − Y 1

j
Y ∗
j

) (
Y ∗
j −d∗

j
Y ∗
j −1

)
d∗
j

where: {d0j , d1j } indicate the number of new cases at time
j, respectively in the clusters that are not treated (labelled
by the superscript 0) and in those that are treated (labelled

by the superscript 1); {Y 0
j ,Y 1

j } indicate the number of sub-
jects at risk at time j in the untreated and treated clusters,
respectively; d∗

j = d0j +d1j and Y ∗
j = Y 0

j +Y 1
j are the total

incident cases and number at risk at time j.
The log-rank statistic can be computed assuming either

a standard CRT scheme or a time-varying allocation of
the clusters to the intervention. The comparison between
its values under the two scenarios provides a measure of
the DE for a SWT. The final sample size calculation is
then performed by inflating a suitable standard sample
size (based on [23]) by this factor. In the original paper
[16], the computation of the values for d0j and d1j is based
on simulations, but we note here that their procedure is
fundamentally different from the one we describe in the
next sections and, as such, we still class this method as a
form of analytical calculation.

Limitations of analytical sample size calculations
As mentioned above, the main limitation of the ana-
lytical methods of [14–16] is that they are not directly
applicable when repeated measures are taken on the
same individuals over time, due to the additional level
of correlation implied in this case. Thus, calculations
based on cross-sectional data are likely to overestimate
the required sample size for a design involving repeated
measurements.
More importantly, while analytical formulae and DEs

are generally simple to use, the extra complexity of sev-
eral potential SWT designs means that these cannot be
directly used without applying the necessary modifica-
tions to the original formulation, to align the design and
analysis models for the SWT under consideration. Con-
sequently, the use of simulation-based methods has been
suggested as a valid and more general alternative [24],
which can be used to cater for the specific features of a
SWT.

Simulation-based sample size calculations
The use of a simulation-based approach to determine the
optimal sample size for a study is not a new concept, nor
is it specific to the design of SWTs [25–27]. Stated briefly,
the idea is to consider a model to represent the data gener-
ating process (DGP), which describes how the researchers
envisage the way in which the trial data will eventually be
observed. This should be the model that is used to anal-
yse the data, after the study has been conducted. Using
the assumed DGP, data can be simulated a large number
of times and the resulting ’virtual trials’ can be analysed
using the proposed analysis model.
Some of the parameters may be varied across the sim-

ulations: for example, it is interesting to investigate the
results obtained by varying the total number of obser-
vations. The optimal sample size is set to the minimum
number of subjects for which the proportion of simulated
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trials that correctly deem the intervention as significant
at the set α−level is greater than or equal to the required
power.
The main advantage of using simulation-based

approaches to determine the sample size is that, in princi-
ple, any DGP can be assumed, no matter how complex. Of
course, trials associated with more complicated designs
will also require longer computational time to produce a
sufficient number of runs to fully quantify the operating
characteristics, for example, in terms of the relationship
between power and sample size. This is essential to
estimate the required sample size properly.

Cross-sectional data designs
The simplest situation is probably that of a repeated cross-
sectional design in which measurements are obtained at
discrete times from different individuals. This manner of
taking measurements is consistent with an open cohort
SWT in which a small fraction of the participants in each
trial cluster is sampled for measurements at each time
[22].
In this case, the general framework for the simulation-

based approach can be described as follows. Individual
variability in the observed data Yijk is described using
a suitable distribution depending on the nature of the
outcome and characterised by cluster- and time-specific
mean μij and an individual (within-cluster) level variance
σ 2
e . The mean of the outcome is described by a linear

predictor, on a suitable scale:

φij = g(μij) = μ + αi + βj + Xijθ .

When considering symmetrical and continuous data, we
may assume a normal distribution, and thus the function
g(·) is just the identity. For example, [28] assessed the
impact of a nutritional intervention on preventing weight
loss using this formulation. The assumption of normality
is by no means essential: for instance, if we were aware
of potential outliers, we could assume a more robust t
distribution for the observed data.
In a simulation-based framework, it is straightforward

to extend this structure to account for other types of out-
comes; for example, binary responses are appropriately
dealt with by assuming a Bernoulli distribution for the
individual data and then considering a log-linear predictor
on the odds, that is, g(μij) = logit (μij). This is the frame-
work used by [29] to identify the proportion of patients
obtaining a pre-specified weight loss, that is, modify-
ing the definition of the primary outcome for the trial
of [28].
Similarly, it is possible to consider count data modelled

assuming a Poisson distribution and then a log-linear pre-
dictor for the mean g(μij) = log (μij), as in the trial
described by Bacchieri et al. [30], who assessed the effec-
tiveness of a cycling safety program by determining the

number of accidents over time pre- and post-intervention.
Notice also that this definition of the linear predictor
applies to continuous and skewed observations, which can
be modelled using a lognormal or a gamma distribution.

Closed cohort designs
Another relevant situation is represented by repeated
measurements on the same cohort of individuals, termed
a closed cohort in [22]. Under this design, it is necessary to
account for the induced correlation between the measure-
ments obtained by the same individual. This is easily done
by adding a random effect vik ∼ Normal (0, σ 2

v ), which
is specific to the k-th individual in cluster i, to each of
the linear predictors described above. In the most basic
formulation this then becomes

φij = g(μij) = μ + αi + βj + Xijθ + vik ,

but of course it is possible to extend this to combine
the cluster- and individual-specific random effect with
other features. This construction can be easily extended to
account for ’multiple layers of clustering’ (similar to those
mentioned in [17]).

Modelling extensions formore complex data generating
processes
The use of simulation-based sample size calculations
proves particularly effective to model the extra complexity
implied by non-standard cases. Examples are the inclusion
of additional covariates, which may or may not depend
on time or the cluster allocation to the intervention, as
well as more structured effects (such as interactions or
higher order effects for the intervention or other covari-
ates included in the model, such as quadratic trends).
One relevant potential extension to the model is to con-

sider a data generating process including an additional
cluster-specific random effect, so that the linear predictor
becomes

φij = g(μij) = μ + αi + βj + Xij(θ + ui),

depending on the suitable link function g(·). Here ui ∼
Normal (0, σ 2

u ) and σ 2
u is a variance term common to all

the clusters. These terms can be interpreted as cluster-
specific variations in the intervention effect. Alternatively,
the term (θ + ui) can be interpreted as a cluster-varying
slope for the intervention effect.
This structure may be relevant, for example, to address

cases where variations in how the intervention is imple-
mented in different clusters are likely to occur. Notice that
the data will inform the estimation of σ 2

u so that, if there is
no evidence of cluster-specific variations in the interven-
tion effect, this parameter will be estimated to be 0 and
thus all clusters will be estimated to have the same inter-
vention effect. In practical terms, in order to perform the
simulation-based sample size calculations, it is necessary
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to provide an estimate of the variance σ 2
u . This may not

be known with precision, and thus it is helpful to perform
sensitivity analysis on the actual choice.
Another interesting extension to the framework

involves including a random effect to model time, for
example βj ∼ Normal (0, σ 2

β ) with σ 2
β specifying a vari-

ance term common to all time points. Alternatively,
the time effect may be specified using more complex
specifications such as random walks. HH have already
discussed this possibility and suggested that it “might
be particularly appropriate if temporal variations in the
outcome were thought to be due to factors unrelated to
changes in the underlying disease prevalence (e.g. changes
in personnel doing outcome surveys)”. Again, this would
not have any substantial implication on our simulation
methods, although the additional time-specific random
effect would make the structure of the models more
complex and thus potentially increase the computational
time.
Notice that these more general constructions involve

the specification of suitable values for additional parame-
ters and that, while often providing a more robust option,
as seems intuitively obvious, these complications in the
modelling structure will generally increase the required
sample size. In addition, thesemore complexmodels apply
equally to cross-sectional and cohort designs.

Simulation procedure
Regardless of themodelling assumptions for the outcomes
or the form assumed for the cluster- and time-specific
mean, the simulation procedure can be schematically
described as follows.

i. Select a total sample size n (for example, total number
of individuals measured) and a suitable combination
of the number of clusters I and time points J.

ii. Provide an estimate of the main parameters. These
can be derived from the relevant literature or expert
opinion. We recommend thorough sensitivity
analyses to investigate the impact of these
assumptions on the final results, in terms of optimal
sample size. In the simplest case described above,
these include:

a. The design matrix X , describing how the
clusters are sequentially allocated to the
intervention arm;

b. The intercept μ, which represents an
appropriate baseline value;

c. The assumed intervention effect θ ;
d. The between- and within-cluster variances σ 2

α

and σ 2
e . Given the relationship between these

two variances and the ICC, it is possible to
supply one of them and the ICC, instead.

iii. Simulate a dataset of size n from the assumed model.
In the simplest case mentioned above, this amounts
to the following steps:

a. Simulate a value for each of the random
cluster-specific effects αi ∼ Normal(0, σ 2

α );
b. Simulate a value for the fixed time-specific

effect βj, for example, a linear trend;
c. Compute the linear predictor by plugging in

the values for the relevant quantities; note that
this represents the mean of the outcome, on a
suitable scale;

d. Simulate a value for the outcome from the
assumed distribution and using the
parameters derived in the previous steps.

iv. Analyse the resulting dataset and record whether the
intervention effect is detected as statistically
significant.

Steps iii and iv are repeated for a large number S of
times for each of the selected values of n, and the pro-
portion of times in which the analysis correctly detects
the assumed intervention effects as significant is used as
the estimated power. The lowest value of n in correspon-
dence of which the estimated power is not less than the
pre-specified threshold (usually 0.8 or 0.9) is selected as
the optimal sample size. A Monte Carlo estimate of the
error around the estimated power can be easily computed
and used as a guideline to determine the optimal number
of simulations to be used. In many situations, a value of S
in the order of 1,000s will suffice.
Sensitivity to the choice of the fundamental parameters

can be checked by selecting different values and repeat-
ing the procedure. For example, it is possible to assess
the impact of varying the cluster size. An alternative
version of this algorithm may involve the adoption of
a fully Bayesian approach [31]; this amounts to mod-
elling the uncertainty in the basic parameters using
suitable probability distributions. For example, one could
assume that, based on currently available evidence, the
between-cluster standard deviation is likely to lie in a
range between two extreme values a and b. This may be
translated, for example, into a prior uniform distribution
defined in (a, b). The sample size calculations would
then account for the extra uncertainty in the actual value
of this parameter. The benefits of this strategy are of
course higher if genuine information is available to the
researchers.

Results
We used both analytical and simulation-based calcula-
tions to assess several aspects of a SWT, in terms of
sample size calculations.
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As suggested by Hemming et al. [32], in some cases
the information provided by the within-cluster analysis
in a SWT may lead to an improvement in efficiency, in
comparison to a CRT with the same number of overall
measurements. This is due to the fact that not only are
within-cluster comparisons used to estimate intervention
effects, but also within-subject comparisons [33]. Thus,
we first assess the efficiency of a SWT against a stan-
dard CRT by comparing the sample size resulting from
applying several alternative calculationmethods and upon
varying the ICC.
Then, we validate the simulation-based approach

against the analytical formulation of HH, for cross-
sectional data. Finally, we use the simulation-based
approach to assess the impact of varying the basic param-
eters to the resulting sample size/power, in the case
of continuous and binary outcomes and assuming both
cross-sectional data and the closed cohort design.
All simulations and analyses were performed using the

freely available software R [34]. A package will be made
available, containing suitable functions to perform ana-
lytic and simulation-based calculations to determine the
sample size of a SWT.

SWT versus CRT
For all types of outcomes described above and assuming
cross-sectional data, we computed the number of clus-
ters required to obtain 80 % power to detect a specified
intervention effect using the following methods: a stan-
dard inflation factor based on a CRT (results are presented
in the first two columns of Table 1); the DE of Woertman
et al. (the third column); the analytical values of HH (the
fourth column).
For all the outcomes, we considered a linear time

trend and arbitrarily assumed a standardised effect size of
around 0.25, obtained by setting the following inputs:

• Continuous outcome: baseline value μ = 0.3;
intervention effect θ = −0.3785; total standard
deviation σy = 1.55.

• Binary outcome: baseline probability μ = 0.26;
intervention effect OR = exp(θ) = 0.56.

• Count outcome: baseline rate μ = 1.5; intervention
effect RR = exp(θ) = 0.8.

The values selected for the examples are loosely based on
three of the trials we have reviewed [28–30].
For the two DE methods, we first computed the sam-

ple size required for a parallel RCT and then applied the
suitable inflation factor. In the SWT design, we consid-
ered a common setting with K = 20 subjects per cluster
at each of a total of J = 6 time points at which measure-
ments were collected, that is, one baseline time at which
all the clusters are in the control arm and 5 times at which

Table 1 Estimated number of clusters for three sample size
calculation methods used in SWTs, as a function of the ICC and
outcome type (continuous, binary and rate) to obtain 80 % power

ICC Standard CRT inflation factor DE inflation
factor based on
Woertman et al.

Analytical power
based on HH

K = 20, J = 1 K = 120, J = 1 K = 20, J = 6 K = 20, J = 6

Continuous outcomea

0 26 5 8 9

0.1 74 55 12 12

0.2 122 105 11 11

0.3 170 155 10 10

0.4 218 205 9 9

0.5 266 256 7 7

Binary outcomeb

0 25 5 8 10

0.1 71 53 12 13

0.2 117 101 11 12

0.3 163 149 9 11

0.4 209 197 8 10

0.5 256 246 7 8

Count outcomec

0 24 4 8 8

0.1 69 51 11 11

0.2 114 98 10 10

0.3 159 145 9 9

0.4 203 192 8 8

0.5 248 238 7

a Intervention effect = −0.3785; σy = 1.55; sample size for a parallel RCT = 253
subjects per arm.
bBaseline outcome probability = 0.26; OR = 0.56; sample size for a parallel RCT = 243
subjects per arm.
cBaseline outcome rate = 1.5; RR = 0.8; sample size for a parallel RCT = 236 subjects
per arm.
Notation: K = number of subjects per cluster; J = total number of time points,
including one baseline

the clusters sequentially switch to the intervention arm.
Conversely, we considered two cases for the CRT: in the
first one, we assumed the same number of measurements
per cluster as in the SWT K = 20, while in the second
we assumed a cluster size equal to the total number of
subjects in the corresponding SWTs (that is, 120 subjects,
each measured at one single time point). We programmed
the analytical calculations of HH in R and validated the
output using the steppedwedge routine in Stata.
For all outcomes, we varied the ICC from 0, indicating

no within-cluster correlation, to 0.5, which can be con-
sidered a high level of correlation, particularly in clinical
settings. The methods discussed here are all based on the
assumption that information is provided in terms of the



Baio et al. Trials  (2015) 16:354 Page 8 of 15

total variance σ 2
y , which is in turn used to determine the

between-cluster variance σ 2
α = σ 2

y ρ. This poses no prob-
lem in the computation of DEW and the HHmethod, since
they are both based on (approximate) normality of the
outcomes. Thus, it is easy to control which source of vari-
ation is inputted through the variance parameter, which is
separate from the linear predictor.
Table 1 shows that, in comparison with the standard

CRT, the SWT can be much more efficient, under the
settings we have considered. As previously reported [14],
for increasingly larger values of the ICC (roughly speak-
ing, greater than 0.1), the total number of measurements
computed as I(J + 1)K required to achieve 80 % power is
increasingly smaller for a SWT than for either form of the
CRT that we consider here. On the contrary, for very small
values of the ICC, the two CRTs considered in Table 1
require a marginally smaller number of observations. This
result is consistent across the three types of outcomes.
The DE computed using the method of Woertman et al.

produces results very similar to those of the original HH
calculations, particularly for continuous and count out-
comes, in which cases the computed number of clusters is
identical for the two methods.

Simulation-based versus analytical sample size calculations
We then compared the results of the simulation-based
approach applied to three types of outcomes with the
HH analytical calculations. Notice that in the binary and
count outcome cases it is more cumbersome to assume
that information is provided in terms of the total vari-
ance. This is because, unlike the normal distribution,
the Bernoulli and Poisson distributions are characterised
by a single parameter, which simultaneously determines
both the linear predictor and the variance. Consequently,
because the linear predictor includes the cluster-specific
random effects αi, assuming a fixed total variance σ 2

y
implies a re-scaling of the baseline value μ to guarantee
that the resulting total variance approximates the required
value.
For this reason, when using a simulation-based

approach for non-normally distributed outcomes it is eas-
ier to provide information on the within-cluster variance
σ 2
e as input, which is then used to determine the between-

cluster variance as σ 2
α = σ 2

e
ρ

1−ρ
. Since it is also possible

to provide the within-cluster variance as input for the
HH calculations, we use this strategy here, while keep-
ing the numerical values from the previous example. This
explains why the numbers for themethod of HH in Table 2
differ from those in Table 1.
The simulation-based power calculations are obtained

by using the procedure described in the previous sections,
repeating the process 1 000 times and assessing the result-
ing power within Monte Carlo error. As shown in Table 2,
there was very good agreement between the method of

Table 2 Comparison of the simulation-based approach with the
analytical formulae of HH. The cells in the table are the estimated
number of clusters as a function of the ICC and outcome type
(continuous, binary and rate) to obtain 80 % power

ICC Analytical power based on HH Simulation-based calculations

K = 20, J = 6 K = 20, J = 6

Continuous outcomea

0 9 9

0.1 13 13

0.2 14 13

0.3 14 14

0.4 14 14

0.5 14 14

Binary outcomeb

0 11 15

0.1 17 16

0.2 18 17

0.3 18 18

0.4 18 18

0.5 18 18

Count outcomec

0 8 8

0.1 13 12

0.2 13 12

0.3 13 12

0.4 13 11

0.5 13 11

a Intervention effect = −0.3785; σe = 1.55.
bBaseline outcome probability = 0.26; OR = 0.56.
cBaseline outcome rate = 1.5; RR = 0.8.
Notation: K = number of subjects per cluster; J = total number of time points,
including one baseline

HH and our simulations, particularly for the case of con-
tinuous outcome in which the results were identical. For
binary and count outcome, the estimated numbers of clus-
ters required to obtain 80 % power were slightly less
aligned between the simulations and the method of HH.
This is not entirely surprising, given that HH assume
approximate normality, while our simulations directly
address non-normality using binomial and Poisson mod-
els, respectively.

Closed cohort design versus cross-sectional data:
continuous and binary outcomes
Effect size and ICC
Figures 1 and 2 show the power computed using our
simulation-based approach as a function of the assumed
effect size and the ICC for the continuous and binary
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Fig. 1 Power curves for a continuous outcome assuming: 25 clusters,
each with 20 subjects; 6 time points including one baseline. We varied
the intervention effect size and the ICC variations. Panel (a) shows the
analysis for a repeated closed cohort (cross-sectional) design, while
panel (b) depicts the results for a closed cohort design. In panel (b)
the selected ICCs are reported for cluster and participant level

outcome, respectively. We assume I = 25 clusters each
with K = 20 subjects and a total of J = 6 measurements.
In both figures, panel (a) shows the results for the cross-
sectional data, while panel (b) depicts those for the closed
cohort design.
It is clear that large increases in the ICC at the cluster

level for cross-sectional data result in a decline in power.
In the closed cohort design case, we assessed the sensi-
tivity of different specifications of the ICC both at the
cluster and at the participant level. While in the case of
continuous outcomes, changes in the ICC seem to only
marginally affect the power, when considering a binary

Fig. 2 Power curves for a binary outcome assuming: 25 clusters, each
with 20 subjects; 6 time points including one baseline. We varied the
intervention effect size and the ICC variations. Panel (a) shows the
analysis for a repeated closed cohort (cross-sectional) design, while
panel (b) depicts the results for a closed cohort design. In panel (b)
the selected ICCs are reported for cluster and participant level

outcome, large values of the ICC (particularly at the clus-
ter level) seem to reduce the power more substantially. In
any case, the impact of the ICC appears less important
than that of the mean difference.

Number of crossover points
Figures 3 and 4 illustrate the effect of varying the num-
ber of clusters randomised each time and the number of
crossover points with continuous and binary outcomes,
respectively.
We assumed a fixed setup including I = 24 clusters

and varied the total number of crossover points J from
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Fig. 3 Power curves for a continuous outcome assuming 24 clusters,
each with 20 subjects. We varied the ICC and the number of
randomisation crossover points. Panel (a) shows the analysis for a
repeated closed cohort (cross-sectional) design, while panel (b)
depicts the results for a closed cohort design (assuming
individual-level ICC of 0.0016)

6 (that is, 4 clusters randomised at each time) to 2 (that
is, 12 clusters randomised at each time). In both designs,
we assume that subjects are measured once at each time
point and that there is an individual level ICC of 0.0016
(again loosely based on the setting presented in [28, 29]).
Therefore, for cross-sectional data we assume more indi-
viduals are measured per cluster with a larger number
of crossover points, and for a closed cohort setting, we
assume more measurements are taken on each individual
with a larger number of crossover points.
Not surprisingly, the highest power is consistently

observed as the number of crossover points increases

Fig. 4 Power curves for a binary outcome assuming 24 clusters, each
with 20 subjects. We varied the ICC and the number of randomisation
crossover points. Panel (a) shows the analysis for a repeated closed
cohort (cross-sectional) design, while panel (b) depicts the results for
a closed cohort design (assuming individual-level ICC of 0.0016)

and thus the number of clusters randomised at each
crossover decreases. Consequently, optimal power will
be achieved when only one cluster switches to the
intervention arm at each time point. However, as noted
previously by HH, in some practical cases it may be
unfeasible for logistic reasons to have a large number of
crossover points. Thus, measurement points should be
maximised within the constraints of resource availability.
In line with [35], the power gains from increasing the
number of crossover points are not linear — with smaller
gains when moving from four to six than when going
from two to three crossover points. Given the potential
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additional cost of increasing the number of crossover
points and resulting total number of measurements, it
may not pay off to inflate the number of crossover points
substantially.

Time effect
Failure to include a time effect in the analysis model, when
one was assumed in the DGP, significantly but erroneously
inflated the power. Figure 5 shows our analysis for a con-
tinuous outcome, assuming I = 25 clusters, each with
K = 20 subjects and a total of J = 6 measurements; panel
(a) describes the case of a repeated cohort design, while
panels (b) and (c) consider the case of a cohort design with
individual level ICC of 0.1 and 0.5, respectively.
For the repeated cohort design, the power was also

slightly inflated when time was included in the model as
a continuous as opposed to a factor variable. The greater
impact of variations in low ICC values for the repeated
cohort design is clearly visible, as is the lesser sensitivity
of the closed cohort design to variations in the within-
cluster correlation. Studies based on continuous outcomes

would therefore benefit from the use of a closed cohort
design when there is substantial uncertainty on the ICC at
the cluster level; however, there does not appear to be a
general benefit of repeated measures over cross-sectional
measurements.
Figure 6 illustrates the effect on power of misspecifica-

tion of the time effect in the case of a binary outcome upon
varying the assumed values of the ICC. Similarly to what
occurs in the continuous outcome case, failure to account
for a time effect in the analysis when one is assumed in the
DGP results in an overestimation of the power for both
repeated cohorts (panel a) and closed cohorts (panels b
and c).
Previous research on CRTs has found that modelling

time in the analysis substantially reduces the magnitude
of the impact of the ICC without reducing the degrees
of freedom available for the error term [36]. Given the
results of Figs. 5 and 6, this does not appear to be the
case for a stepped wedge design, where the impact of
varying the ICC is relatively similar for the analysis
ignoring and the one including the time effect. We note

Fig. 5 Power curves for a continuous outcome assuming 25 clusters, each with 20 subjects and 6 time points at which measurements are taken
(including one baseline time). We varied the way in which the assumed linear time effect is included in the model (if at all). Panel (a) shows the
results for a repeated cohort design; panel (b) shows the results for the closed cohort design, assuming a cluster-level ICC of 0.1 and varying the
participant-level ICC; panel (c) shows the results for the closed cohort design, assuming a cluster-level ICC of 0.5 and varying the participant-level ICC
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Fig. 6 Power curves for a binary outcome assuming 25 clusters, each with 20 subjects and 6 time points at which measurements are taken
(including one baseline time). We varied the way in which the assumed linear time effect is included in the model (if at all). Panel (a) shows the
results for a repeated cohort design; panel (b) shows the results for the closed cohort design, assuming a cluster-level ICC of 0.1 and varying the
participant-level ICC; panel (c) shows the results for the closed cohort design, assuming a cluster-level ICC of 0.5 and varying the participant-level ICC

however that this result may not hold for different spec-
ification of the time effect (for example, as a quadratic
term).

Random intervention effect
We have also evaluated the impact of specifying a model
including a random intervention effect. In the simula-
tions, the power decreases considerably upon increasing
the assumed standard deviation for the intervention
random effect, that is, by assuming increasingly substan-
tial variability in the intervention effect by cluster. For
instance, it nearly halves for the binary case described
above, when assuming a moderately large standard devi-
ation for the random intervention effect (specifically, a
value of σu = 0.3). Of course, as the assumed value for
σu gets closer to 0, there is less and less difference with
the base case, including a fixed intervention effect only.
The increase in the underlying variability (and therefore
in the resulting sample size) seems to be lower in the case
of continuous and normally distributed outcomes.

Discussion
The claim that SWTs are more efficient than a parallel
group CRT in terms of sample size [15] has come under
heavy criticism, for example, in [32], where it is suggested
that the SWT design is beneficial only in circumstances
when the ICC is high, while it produces no advantage as it
approaches 0. This finding was corroborated by [37]. Sub-
sequently some of the authors of the original article [15]
clarified in a letter [38] that their claims for superior effi-
ciency for the stepped wedge design relate to the option
to use fewer clusters, whilst the number of individual par-
ticipants is often greater. Moreover, HH appear to suggest
that the advantage in power from a SWT seen in their
work and that of Woertman comes from the increase in
the number of participants (assuming as do HH a design
with cross-sectional data collected at every crossover) and
not the additional randomised crossover points. Kotz et al.
[39] argued that power could be amplified to a similar
level in standard parallel trials by simply increasing the
number of pre- and post-measurements, an assumption
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supported by Pearson et al. [40], who provided an informal
comparison between the implementation of a particular
intervention using the stepped wedge design and a non-
randomised pre-test-post-test design. This issue has been
recently re-examined by Hemming et al. [18], who sug-
gest that a SWT with more than 4 crossover points may
be more efficient than a pre-post RCT.
In our work we have also considered the case of cross-

sectional data in which each participant provides one
measurement to the trial and considered a CRT with the
same number of measurements per cluster as a SWT.
Under these assumptions, our results are in line with those
pointed out above and suggest that, at the cluster size con-
sidered, a SWT is more efficient unless the ICC is rather
low, for example, much less than 0.1. In other words,
given cross-sectional data and the same number of par-
ticipants measured per cluster, the SWT may often be a
more efficient trial design and so will require fewer clus-
ters. The SWT is a design in which a lot of information
can be gained from each cluster by increasing the num-
ber of measurements per cluster, and is suited to settings
where clusters are limited or expensive to recruit. In other
settings the costs of adding a cluster to a trial may be low,
and it may be more efficient for a given total number of
measurements in the trial to conduct a CRT with a large
number of clusters (few measurements per cluster) than a
SWT with a smaller number of clusters. The CRT would
then also be of shorter duration. More generally the costs
of a trial may relate to the number of clusters, the trial
duration, the total number of participants and the total
number of measurements all together in a complex way.
Hence, while a SWT is often chosen because there is no
alternative trial design, when a SWTor CRT could both be
chosen and maximum power is the goal, then the choice
between them given the total trial budget requires careful
consideration.
In our study, the stepped wedge design was found to

be relatively insensitive to variations in the ICC, a find-
ing reported previously in [14]. We also found that in
the case where measurements are taken at each discrete
time point in the SWT, for a fixed number of clusters
the resulting power increases with the number of ran-
domisation crossover points. This is rather intuitive, since
for these designs an increase in the number of crossover
points equates to an increase in the number of measure-
ments; hence, more information will be available and the
number of subjects required will be lower. In practice, the
most extreme situation of having one cluster randomised
to the intervention at each time point may be unfeasible
for these designs. A practical strategy is to simply max-
imise the number of time intervals given constraints on
the number of clusters that can logistically be started at
one time point and the desired length of the trial. More-
over, in sensitivity analyses (not shown) it appeared that

the gain of increasing the number of crossover points
while keeping the number of clusters and the total number
of measurements fixed was modest, in comparison with
the efficiency gain from adding clusters or measurements
to the design. Increasing the number of subjects per clus-
ter may also result in power gains, but as with CRTs, these
may be minimal [41].
The failure to consider a time effect when one existed

erroneously increased the power. Consequently, we advise
researchers to ensure that the effect of time is accounted
for in the power calculations, at least as a failsafe measure.
Inclusion of time as a factor only minimally reduced the
power in comparison to the case in which it was included
as a continuous variable, using a linear specification. For
generalisability of the time effect and simplicity in the
interpretation of the model, it is perhaps even more effec-
tive to use a set of dummy variables for the time periods,
instead of a single factor [42].
The inclusion of a random intervention effect produced

an increase in the resulting sample size; this was an intu-
itive result, as our simulations assumed an increase in
the underlying variability across the clusters. It is worth
bearing this possibility in mind when designing a SWT,
as the assumption of a constant intervention effect across
the clusters being investigated may often be unrealistic,
thus leading to potentially underpowered studies. Again,
the flexibility of the simulation-based methods allows the
incorporation of this feature in a relatively straightforward
way.
Not all design possibilities were addressed in our study:

for example, the impact of unequal cluster sizes was not
considered. In general terms, we would expect a loss
of power if the cluster sizes vary substantially, which
is consistent with the literature on CRTs [43]. Using a
simulation-based approach, relevant information about
the expected distribution of cluster sizes in the trial may
be easily included in the power computations.
The effect of drop-out was also not fully assessed. This

may be relevant, since the extended time required for
SWTs may reduce retention, resulting in missing data and
loss of power. The impact of drop-out may vary according
to how individuals participate in the trial and how mea-
surements are obtained. For cross-sectional data, drop-
out can be addressed in a standard manner by inflating
the sample size. Drop-out in closed cohort trials, where
repeated measurements on individuals are obtained, may
be most problematic. Assumptions about the drop-out
mechanism and its variation between clusters can be
incorporated into a simulation-based approach and their
impact on the resulting sample size assessed at the design
stage.
Throughout our analysis, time was only considered as

a fixed effect. The reason underlying this assumption is
that interest was in controlling for temporal trends and
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fluctuations in prevalence of the outcomes over the course
of the particular trials. Including time as a random effect
would also result in a more complex model, as adjacent
time periods are unlikely to be independent. However,
as noted in [14], such an approach might be appropri-
ate if temporal variations in the outcome were thought to
be due to factors unrelated to changes in the underlying
prevalence of the outcome (such as changes in personnel
collecting the outcome data), which may not always be the
case.
In line with other articles in this special issue, our work

highlights that while SWTs can produce benefits and pro-
vide valuable evidence (particularly in implementation
research), they are usually also associated with extra com-
plexity in the planning and analysis stage, in comparison
to other well-established trial designs. For this reason, it is
important to apply the best available methods to carefully
plan the data collection. In our work, we have highlighted
some of the features that may hinder this process.We plan
to make an R package available to allow the practitioners
to use both analytical and simulation-based methods to
perform sample size calculations in an effective way.

Conclusions
Our systematic review [11] suggests that, in general, five
main methods have been used to calculate sample sizes
for SWTs: standard parallel RCT sample size calculations,
variance inflation for CRTs, using a specific DE (as in
[15]), analytical methods based on normal approximations
(such as the method of HH) and simulation-based calcu-
lations [24]. Hemming et al. [18] point out that to date
no method has been established to compute the required
sample size for a SWT under a cohort design.
In general, simulation-based approaches appeared to be

a very effective procedure for computing sample size in
SWTs, given the constrained nature of DEs and other ana-
lytical calculations. For example, complex design features
such as varying cluster sizes can be readily incorporated
into simulations. Similarly, it is fairly straightforward to
investigate differing time effects, that is, linear, expo-
nential or fractional forms. Moreover, currently available
analytical forms are based on stepped wedge designs
using cross-sectional outcome data measured at dis-
crete time points and thus are not straightforward to
adapt to other potential designs. Reliance on sample
size calculations for cross-sectional data collection when
repeated samples on the same individuals are taken is
likely to result in overestimation of the required sam-
ple size and thus in wasted resources and unnecessary
participation.
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