88 research outputs found

    Changes in knee kinematics reflect the articular geometry after arthroplasty

    Get PDF
    We hypothesized changes in rotations and translations after TKA with a fixed-bearing anterior cruciate ligament (ACL)-sacrificing but posterior cruciate ligament (PCL)-retaining design with equal-sized, circular femoral condyles would reflect the changes of articular geometry. Using 8 cadaveric knees, we compared the kinematics of normal knees and TKA in a standardized navigated position with defined loads. The quadriceps was tensed and moments and drawer forces applied during knee flexion-extension while recording the kinematics with the navigation system. TKA caused loss of the screw-home; the flexed tibia remained at the externally rotated position of normal full knee extension with considerably increased external rotation from 63° to 11° extension. The range of internal-external rotation was shifted externally from 30° to 20° extension. There was a small tibial posterior translation from 40° to 90° flexion. The varus-valgus alignment and laxity did not change after TKA. Thus, navigated TKA provided good coronal plane alignment but still lost some aspects of physiologic motion. The loss of tibial screw-home was related to the symmetric femoral condyles, but the posterior translation in flexion was opposite the expected change after TKA with the PCL intact and the ACL excised. Thus, the data confirmed our hypothesis for rotations but not for translations. It is not known whether the standard navigated position provides the best match to physiologic kinematics

    Adolescent obesity, educational attainment, and adult earnings

    Get PDF
    We estimate the effects of being obese during adolescence on the likelihood of high school graduation, post-secondary educational attainment and labour market earnings as an adult (over 13 years later). We use longitudinal data from the National Longitudinal Survey of Adolescent Health (Add Health), conducted by the Carolina Population Center of the University of North Carolina at Chapel Hill. This is a nationally representative sample of students in grades 7 through 12 for the 1994-1995 first wave survey. Three subsequent waves of follow-up interviews occurred in 1996, 2001-2002 and finally in 2007-2008, when the sample was aged 25-31. Probit and linear regression models with a large set of controls (to minimize any bias that may result from omitting factors related to both adolescent obesity and adult outcomes) are fitted to carry out analyses separately by gender or racial groups. Pathological body weights are most notably present among males, blacks and Hispanics, suggesting possibility that diverging obesity effects may be found across race and gender groups. Unlike some prior research, we find no significant effects of adolescent obesity on high school graduation, but for some demographic groups, negative effects are found on college graduation and future income. Policy implications are discussed. © 2014 Taylor & Francis

    In Vivo Strain Patterns in the Achilles Tendon During Dynamic Activities: A Comprehensive Survey of the Literature

    Get PDF
    Abstract Achilles’ tendon (AT) injuries such as ruptures and tendinopathies have experienced a dramatic rise in the mid- to older-aged population. Given that the AT plays a key role at all stages of locomotion, unsuccessful rehabilitation after injury often leads to long-term, deleterious health consequences. Understanding healthy in vivo strains as well as the complex muscle–tendon unit interactions will improve access to the underlying aetiology of injuries and how their functionality can be effectively restored post-injury. The goals of this survey of the literature with a systematic search were to provide a benchmark of healthy AT strains measured in vivo during functional activities and identify the sources of variability observed in the results. Two databases were searched, and all articles that provided measured in vivo peak strains or the change in strain with respect to time were included. In total, 107 articles that reported subjects over the age of 18 years with no prior AT injury and measured while performing functional activities such as voluntary contractions, walking, running, jumping, or jump landing were included in this review. In general, unclear anatomical definitions of the sub-tendon and aponeurosis structures have led to considerable confusion in the literature. MRI, ultrasound, and motion capture were the predominant approaches, sometimes coupled with modelling. The measured peak strains increased from 4% to over 10% from contractions, to walking, running, and jumping, in that order. Importantly, measured AT strains were heavily dependent on measurement location, measurement method, measurement protocol, individual AT geometry, and mechanical properties, as well as instantaneous kinematics and kinetics of the studied activity. Through a comprehensive review of approaches and results, this survey of the literature therefore converges to a united terminology of the structures and their common underlying characteristics and presents the state-of-knowledge on their functional strain patterns

    Change management: The case of the elite sport performance team

    Get PDF
    The effective and efficient implementation of change is often required for both successful performance and management survival across a host of contemporary domains. However, although of major theoretical and practical significance, research to date has overlooked the application of change management (hereafter CM) knowledge to the elite sport performance team environment. Considering that the success of ‘off-field’ sports businesses are largely dependent on the performances of their ‘on-field’ team, this article explores the application of current CM theorizing to this specific setting and the challenges facing its utility. Accordingly, we identify the need and importance of developing theory specific to this area, with practical application in both sport and business, through examination of current knowledge and identification of the domain's unique, dynamic and contested properties. Markers of successful change are then suggested to guide initial enquiry before the article concludes with proposed lines of research which may act to provide a valid and comprehensive theoretical account of CM to optimize the research and practice of those working in the field

    Treatment of the fixation surface improves glenoid prosthesis longevity in-vitro

    Get PDF
    Many commercial cemented glenoid components claim superior fixation designs and increased survivability. However, both research and clinical studies have shown conflicting results and it is unclear whether these design variations do improve loosening rates. Part of the difficulty in investigating fixation failure is the inability to directly observe the fixation interface, a problem addressed in this study by using a novel experimental set-up.Cyclic loading-displacement tests were carried out on 60 custom-made glenoid prostheses implanted into a bone substitute. Design parameters investigated included treatment of the fixation surface of the component resulting in different levels of back-surface roughness, flat-back versus curved-back, keel versus peg and more versus less conforming implants. Visually-observed failure and ASTM-recommended rim-displacements were recorded throughout testing to investigate fixation failure and if rim displacement is an appropriate measure of loosening. Roughening the implant back (Ra > 3 µm) improved resistance to failure (P < 0.005) by an order of magnitude with the rough and smooth groups failing at 8712 ± 5584 cycles (mean ± SD) and 1080 ± 1197 cycles, respectively. All other design parameters had no statistically significant effect on the number of cycles to failure. All implants failed inferiorly and 95 % (57/60) at the implant/cement interface. Rim-displacement correlated with visually observed failure. The most important effect was that of roughening the implant, which strengthened the polyethylene-cement interface. Rim-displacement can be used as an indicator of fixation failure, but the sensitivity was insufficient to capture subtle effects.Level of Evidence: Basic Science Study, Biomechanical Analysis
    corecore