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Abstract 23 

Many commercial cemented glenoid components claim superior fixation designs and 24 

increased survivability. However, both research and clinical studies have shown conflicting 25 

results and it is unclear whether these design variations do improve loosening rates. Part of 26 

the difficulty in investigating fixation failure is the inability to directly observe the fixation 27 

interface, a problem addressed in this study by using a novel experimental set-up. 28 

Cyclic loading-displacement tests were carried out on 60 custom-made glenoid 29 

prostheses implanted into a bone substitute. Design parameters investigated included 30 

treatment of the fixation surface of the component resulting in different levels of back-surface 31 

roughness, flat-back versus curved-back, keel versus peg and more versus less conforming 32 

implants. Visually-observed failure and ASTM-recommended rim-displacements were 33 

recorded throughout testing to investigate fixation failure and if rim displacement is an 34 

appropriate measure of loosening.  35 

Roughening the implant back (Ra > 3 µm) improved resistance to failure (P < 0.005) by 36 

an order of magnitude with the rough and smooth groups failing at 8712 ± 5584 cycles (mean 37 

± SD) and 1080 ± 1197 cycles, respectively. All other design parameters had no statistically 38 

significant effect on the number of cycles to failure. All implants failed inferiorly and 95 % 39 

(57/60) at the implant/cement interface. Rim-displacement correlated with visually observed 40 

failure.  41 

The most important effect was that of roughening the implant, which strengthened the 42 

polyethylene-cement interface. Rim-displacement can be used as an indicator of fixation 43 

failure, but the sensitivity was insufficient to capture subtle effects. 44 

 45 

Level of Evidence: Basic Science Study, Biomechanical Analysis. 46 
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Introduction  1 

The clinical incidence of glenoid component loosening in total shoulder replacement (TSR) 2 

remains high and increases dramatically at longer follow-up. Torchia et al. (1997) reported 3 

radiographic loosening rates of 44% at 9.7 years while more recent papers have reported 4 

48.5% at 10 years
 
and 66.4% at 15 years (Young et al., 2011). In an attempt to lower these 5 

loosening rates several types of glenoid components have been tried.  6 

 7 

Current glenoid implant designs vary in several ways: the anchorage of the implant (keel or 8 

pegs), the level of conformity between the humeral and glenoid components, curve-back 9 

versus flat-back shape, and macrostructures for cement interlocking. The effect of all these 10 

parameters on loosening of cemented all-polyethylene glenoid components is still not well 11 

understood. 12 

 13 

One design feature that has not received much attention is the roughness of the backside of 14 

the implant. Anglin et al. (2001) demonstrated a dramatic improvement to glenoid resistance 15 

to mechanical loosening in two specimens after sandblasting the backside of the polyethylene 16 

glenoid component. The importance of roughening the polyethylene-cement interface was 17 

also indicated by Nyffeler at al. (2003) who showed that the pull-out strengths of 18 

polyethylene pegs in cement was increased by an order of magnitude in pegs that had been 19 

roughened by sandblasting. The paper also reported clinical failure at the implant-cement 20 

interface from a retrieved implant (Figures 6 and 7 in Nyffeler at al. 2003). 21 

 22 

The lack of clarity of the effects of design parameters relates to the fixation being embedded 23 

in the bone and impossible to observe directly. Instead, previous studies have measured 24 

implant ‘rim-displacement’ and relied on this as an indirect measure of loosening (Anglin et 25 

*Manuscript
Click here to view linked References
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al., 2001; Collins et al., 1992; Oosterom et al., 2004). This methodology is recommended by 26 

the American Society for Testing of Materials (ASTM F2028-14) and based on idealised 27 

cemented glenoids as a model. Due to the lack of clarity in experimental testing, studies 28 

investigating glenoid design features have largely utilised numerical methods to investigate 29 

stress patterns during various loading regimes. Lacroix and Prendergast 1997 predicted peg 30 

implants would perform better in normal bone, whereas keel would perform better in 31 

rheumatic bone, however Mansat et al. 2007 found no clear differences in stresses between 32 

peg and keel. In the case of flat-back verses curve-back, Iannotti et al. 2005 predicted higher 33 

rim displacements in flat-back designs if completely de-bonded and Swieszkowski et al. 2003 34 

predicted high implant wear with glenoid to humeral head radial mismatch of 5 mm or more. 35 

Many finite element studies have been informative but cannot be predictive. Thus numerical 36 

methods can be a powerful supportive tool for the investigation of implant designs, however 37 

the variability in boundary conditions and interfacial conditions can result in varying 38 

conclusions and further highlight the need for a validated experimental approach that can be 39 

used in conjunction with numerical studies.  40 

 41 

The aim of this study was to investigate the effect of the key design variables; keel versus 42 

peg, flat-back versus curve-back, conforming versus non-conforming and rough-backed 43 

versus smooth-backed on the life to failure of glenoid components subjected to cyclic 44 

loading. The second aim was to determine whether the ASTM recommended rim-45 

displacement measure would correlate with direct visual observations of failure, thus 46 

providing confidence in its use as a measure of likelihood of loosening. 47 

 48 

Materials and Methods 49 
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In this study, the inability to directly observe the fixation interface was solved using custom-50 

made implants (Fig. 1). These samples are clearly different from commercial glenoid 51 

prostheses but allowed direct visual inspection of the fixation for failure (Fig. 2). The samples 52 

did not vary in the third dimension and will be described as 2D models/samples. Two-53 

dimensional models are reasonable in this testing configuration because the contact in metal-54 

on-polyethylene implants is point contact where the movement is predominantly 55 

superoinferior, with relatively small anteroposterior movement (Anglin et al. 2000). This 2D 56 

methodology has also been used in a previous paper (Junaid et al., 2010).   57 

 58 

Sixty 2D samples, including 8 different designs were manufactured based on the design of 59 

commercial implants (see Table I). No macrostructures on the keel and peg designs were 60 

included. The commercially available designs were simplified to isolate the effects of design 61 

variations without confounding the comparison by also having different macrostructures. 62 

This was carried out due to the difficulty in standardising the macrostructures, since these 63 

vary from one implant brand to another. The 60 samples were further divided into 2 groups: 64 

24 were smooth, as machined (roughness 0-2 µm), while 36 samples were roughened to 3-5 65 

µm. Roughness measures of a typical smooth-back glenoid implant in clinical use were 66 

measured in the laboratory and found to be 1.58±0.59 μm (peg) and 1.29±0.24 μm (keel). A 67 

commercially available rough-backed implant was measured to have a roughness of 68 

4.43±1.39 μm (peg), thus both smooth and rough samples were within the range required. 69 

The back of the implants were sandblasted to roughen the surface including the peg and keel 70 

features and a Talysurf surface profiler (Taylor-Hobson, AMETEK Inc., Pennsylvania, USA) 71 

was used to measure the surface roughness. Ra is most commonly used as a measure of 72 

surface roughness and is defined as the arithmetic mean of the absolute values of the 73 

roughness profile from the mean line. 74 
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    75 

The glenoid components were implanted into a polyurethane bone substitute using PMMA 76 

bone cement (Simplex
TM

 P, Stryker, New Jersey, USA) (Table II) by an orthopaedic shoulder 77 

surgeon (SS). The bone substitute blocks were prepared using a CNC machine to accurately 78 

cut out the glenoid back and accommodate a 2 mm cement mantle. The cement was hand-79 

mixed at room temperature for approximately 90 seconds then poured into the bone substitute 80 

cavity. The volume of cement mixed was measured and consistent for each sample however, 81 

the volume used per sample was not controlled as this varied from one design to another. The 82 

implant was pressed into the cement using hand pressure and a conforming weight of 83 

approximately 0.5 kg was placed onto the glenoid surface to maintain the 2 mm mantle 84 

between the implant and bone and maintain a constant isotropic pressure during cement 85 

polymerisation. The mantle thickness was manually checked at the time of cementing to 86 

ensure it did not exceed 3 mm and was no less than 2 mm.  87 

 88 

The cylindrical humeral head (radius 24 mm) was compressed into the glenoid using a 89 

horizontal load of 1800 N applied by a pneumatic cylinder (Junaid et al., 2010). All samples 90 

were cyclically tested with a frequency of 0.5 Hz under displacement-control and were tested 91 

in a water bath at 37±2 
o
C as described in the testing standard ASTM F2028-14 using a 92 

servohydraulic machine (Instron 8874, Illinois, USA). The tests were halted and the water 93 

bath removed every 2000 cycles for the samples to be inspected visually for failure and 94 

failure progression. Subsequent to the visual inspection, a custom-made clamp fixed directly 95 

to the bone substitute block was used to clamp two linear variable displacement transducers 96 

(LVDTs) (Solatron Metrology, Bognor Regis, UK), which were aligned to measure the 97 

superior and inferior rim via reference pins inserted at the implant rim edge as specified by 98 

the ASTM standard (Fig. 1). The clamp was attached to the bone substitute block throughout 99 
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testing with only the LVDT removed intermittently during testing to ensure LVDT alignment 100 

and point of reference on the glenoid rim was consistent. 101 

 102 

Emulating the ASTM standard, prior to cyclic testing, two additional samples of each design 103 

were quasi-statically loaded in a non-destructive test to determine the load and displacement 104 

to subluxation. The subluxation curves of the more- and less-conforming groups of 105 

components (Fig. 3) were averaged and 90% of the corresponding load was defined as the 106 

nominal vertical testing load during cyclic testing. The cyclic test set-up was displacement 107 

controlled to avoid sudden extensive failure progressions between inspections, and the actual 108 

testing load decreased slightly as failure progressed. To ensure the 90% subluxation load was 109 

maintained, the imposed displacement was readjusted every 4000 cycles. Cyclic loading was 110 

carried out from the centre of the glenoid to the superior rim, as described in a previous paper 111 

(Junaid et al., 2010). This imposed compressive loads on the superior rim and tensile loads on 112 

the inferior rim. This loading regime is supported by clinical findings of shoulder 113 

biomechanics showing predominantly superior loading and humeral head migration in vivo 114 

(Bergmann et al. 2007; Trial and Nuttall 2002). Initial failure was defined as when the failure 115 

crack was first visible, mid failure as when the crack reached the keel or first peg and failure 116 

was defined as when the failure crack reached the midline of the implant (Fig. 2). 117 

 118 

The Anderson-Darling test was used to test for normality of the data and a non-orthogonal 119 

ANOVA test was carried out to test for statistical significance between the designs.  120 

 121 

Results 122 

All 60 samples irrespective of design failed from the inferior edge. Fifty seven failed at the 123 

implant-cement interface, two in the bone substitute and one at the cement-bone interface. 124 
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Significant differences were not found between any design pairs; only roughness had a clear 125 

effect (P < 0.005) (Fig. 4). The average number of cycles (±SD) to failure for the rough group 126 

was approximately eight times greater at 8712±5584 compared to the smooth group at 127 

1080±1197 cycles. 128 

 129 

When using the rim displacement measure it was also not possible to identify any statistically 130 

significant differences between any of the roughened design pairs (Fig 4). Rim measurements 131 

were not originally part of the study and were not carried out on the smooth samples. An 132 

important observation was that increasing inferior rim displacement was associated with 133 

progressive visual failure in all implant designs (Fig. 5 & 6). Rim displacement greater than 134 

0.61 mm indicated with 95% confidence if a sample was no longer intact and had 135 

experienced either mid-failure or failure. 136 

 137 

Discussion 138 

The most important finding of this study was that a rougher surface of the back of the glenoid 139 

component increased the number of cycles to failure by an order of magnitude. In contrast, 140 

the study did not identify any significant effects of implant design. Improving the interface 141 

strength through roughness has been shown by Anglin et al. (2001), however, this is the first 142 

time a study has investigated design features and roughness together. 143 

 144 

The most important methodological contribution was the creation of a method to observe 145 

crack formation around an implant during cyclic loading. Previously, it has never been shown 146 

that rim displacement does in fact correlate with initial or progressive loosening.  The visual 147 

observation of failure progression – crack growth at the implant-cement interface - was 148 

correlated to the change of inferior rim displacement. The failure mode always initiated at the 149 
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inferior edge of the prosthesis, along the implant-bone interface as also found in a previous 150 

study (Raiss et al., 2011). 151 

 152 

The common perception that the failure is in the cement-bone interface is mostly based on 153 

clinical studies that rely on radiographs. However, radiographic failure (radiolucent lines) 154 

between the implant and cement interface are not visible due to polyethylene being 155 

transparent itself making it impossible to differentiate any radiolucent lines from the 156 

polyethylene. It is also important to note that radiographic loosening detects gross loosening, 157 

however this study is aimed at investigating the early signs of failure where the resolution 158 

and accuracy needed  are beyond the capabilities of current radiographic images. 159 

 160 

Therefore these clinical papers can only conclude that there are radiolucent lines in the bone-161 

cement interface but cannot conclude that there are no radiolucent lines in the implant-cement 162 

interface. Nyffeler et al. (2003) reported clinical failure at the implant-cement interface of a 163 

retrieved implant. Although this failure mode appears to be rare at the stages of failure where 164 

the implant is grossly loose, the authors suspect that this is an early failure mode and not as 165 

rare as is commonly thought due to the inability of radiographs to show failure in this 166 

interface. Gregory et al. (2009) also found early implant-cement failure testing in cadaveric 167 

bone in a similar cyclic glenoid loosening study using CT imaging, further strengthening the 168 

possibility of early implant-cement failure occurring that is not identifiable clinically. Further 169 

on-going work by the authors using cadaveric tissue has shown similar findings to Gregory et 170 

al. 2009 with early implant-cement interface failure evident in most samples and some 171 

cement-bone failure. 172 

 173 



10 

 

The experimental loading regime for this study was used specifically to analyse the type of 174 

failure mode observed and to investigate the hypothesis of whether implant-cement de-175 

bonding due to tensile or compressive loading is the main contributor to failure. Furthermore 176 

limiting the test to superior cyclic loading is not an unreasonable testing regime as there is 177 

clinical and in vivo evidence to show predominately superior loading and humeral head 178 

migration in the glenohumeral joint (Bergmann et al. 2007; Trial and Nuttall 2002). 179 

 180 

The main limitation of the study was that each design group consisted of 3 or 6 samples. The 181 

reason for this discrepancy in numbers is due to the initial aim of producing 3 distinct 182 

roughness groups with 3 repeats. However, the roughing techniques using sandblasting alone 183 

was insufficient to achieve a higher roughness group, thus the roughness groups were pooled 184 

and compared to the smooth group. The relatively small group numbers may have prevented 185 

identifying statistical significance of design effects even when such effects may exist. 186 

However, a post-hoc power analysis of the 16 groups (8 design groups in both the rough and 187 

smooth groups) shows the study to have more than 80% power (α=0.05). Despite this, a post-188 

hoc analysis of the rough and smooth groups separately to identify the power of the design 189 

features within the group found the power to be considerably less than 80%. This may 190 

indicate that the sample number per group was insufficient for analysing the design effects in 191 

detail. Despite this, the results show a general trend that effects were not detectable within the 192 

boundaries of a standardised test and therefore indicates other factors may be more influential 193 

to the fixation strength such as roughness, bone quality, cement penetration, component 194 

positioning and surgical technique. The number of cycles to failure in the smooth (n=23) and 195 

rough (n=36) groups demonstrated a clear dependence on roughness above all other design 196 

parameters.   197 

 198 
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The other limitation (and strength) is the use of the 2D sample configuration, which clearly 199 

differs from the geometry of commercial glenoid components. It is difficult to evaluate the 200 

effect of this simplification, but the justification is it allowed interfacial failure to be observed 201 

directly and it can provide both verification and greater insight for studies using more 202 

realistic models where the failure would not be visible. The loading scenario reflected a 203 

higher loading regime to what is typically expected in a glenoid implant for the reason that a 204 

2D experimental set up was used. In vivo work by Bergmann et al. 2011 showed peak loads 205 

at 200% body weight, approximately translating to 1400 N. Although, the compressive load 206 

used at 1800 N was higher than the ASTM standard, it was not physiologically unreasonable 207 

due to the 2D setup of the experiment. Such a set up will require a contact pressure that is 208 

reflective of the physiological contact pressures (3D setup) rather than using the same loads 209 

in absolute terms. Therefore to ensure comparable testing conditions, the contact pressures in 210 

the 2D setup was compared to a 3D setup using Hertzian contact mechanics, showing contact 211 

pressures to be comparable with 4.1 and 5.9 MPa in the 2D and 3D scenario respectively. 212 

Therefore, while the 2D loads were higher than the clinical 3D loads, the resulting interface 213 

stresses were comparable to those of the clinical setting. In addition to making allowance for 214 

similar contact pressures, published in vivo data (Bergmann et al. 2011) and simulation data 215 

(Anglin et al. 2000) suggests these test parameters are proximate to peak loads experienced 216 

physiologically. 217 

 218 

It was speculated that the omission of macrostructures may have had an effect on the results; 219 

this was carried out due to the difficulty in standardising the macrostructures for 220 

investigation. Since these vary from one implant brand to another, the study focussed on the 221 

key design features that glenoid implants have in common. To include various 222 

macrostructures could have diluted the comparison on cause of failure or resistance to failure. 223 
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This study was carried out for two purposes: to investigate key design features and to validate 224 

a quantitative method of measuring failure progression. The authors plan to test this 225 

measurement method on 3D commercial implants for further validation testing. Further study 226 

on the nuances in macrostructures and their effects on fixation in keel and peg designs is 227 

needed and may be more suited to a 3D setup. 228 

 229 

Large standard deviations were observed in all designs, particularly for the roughened 230 

samples, despite the controlled nature of the experiment. This may be as a result of variations 231 

in the level of cement interlocking in the implant surface and bone substitute. Indeed further 232 

study of the surface topography and surface patterns of the implant back may be interesting to 233 

investigate further but was beyond the scope of this study. In regards to the consistency of 234 

cement penetration/interdigitation, although this was not measured to ensure consistency for 235 

every implant, the cementing technique reflected clinical practice and was carried out by a 236 

clinical colleague. This is believed to more accurately reflect clinical conditions as opposed 237 

to ensuring equal cement penetration throughout the cement mantel. 238 

 239 

There is a question of whether using bone substitute is relevant. The choice in using bone 240 

substitute that is validated to the density range and compressive properties of human bone is 241 

believed to be valid in this case and in alignment with the ASTM standard (F2028-14). By 242 

removing an element of large variation in the study this allows for more conclusive tests to be 243 

carried out on other contributing factors to fixation failure. As mentioned, the results in this 244 

study also concurs with a cadaveric study using CT imaging showing early interfacial failure 245 

at the implant-cement interface (Gregory et al. 2009) and further on-going work by the 246 

authors using cadaveric tissue also supports this finding. It may be that due to the cementing 247 

conditions, cement adheres better to dry bone substitute than real bone, however both the 248 
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cement-bone and implant-cement interfaces experience the same load transmissions, 249 

therefore it could be argued that the failure ranking would remain the same despite possible 250 

variations in interfacial strengths. However, investigating the efficacy of different designs in 251 

light of varying bone conditions and cement penetration is still a necessary part of 252 

investigating glenoid fixation failure which is beyond the scope of this study.  253 

 254 

This study has shown a large beneficial effect from roughening the back side of the glenoid 255 

component. Although Anglin et al. (2001) first indicated the importance of roughening, based 256 

on the immediate failure of just two smooth implants, this study provides a more 257 

comprehensive analysis. In total hip and knee replacements, implant roughness have also 258 

featured in mechanical testing studies looking at the ultimate and fatigue strength of 259 

roughened metal acetabular cups and tibial trays respectively (Delaunay & Kapandji, 1997; 260 

Miyakawa et al., 2004; Pittman et al., 2006). While there has been no other studies on the 261 

effect of roughness on glenoid fixation, in a study of tibial tray fixation Pittman et al. (2006) 262 

found that roughness increased the interface strength. The acetabular cup is not thought to fail 263 

through an eccentric load mechanism such as those for the tibial tray and glenoid component 264 

(Rocking horse mechanism) however, Delauney and Kapandji (1997) did find better 265 

osseointegration of hydroxyapatite coatings on roughened cups compared to smooth. 266 

Likewise, Miyakawa et al. (2004) found osseointegration improved with roughened screws. 267 

Both studies on the acetabular cup investigate cementless fixations and therefore the findings 268 

from these studies cannot easily be related to the findings of this study. In the case of the 269 

femoral stem, detrimental effects of increased roughness on cemented stem loosening has 270 

been well documented (Howie et al., 1998) and are caused be very different fixation 271 

principles than those of the glenoid component and a comparison with these studies is not 272 

meaningful.  273 
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 274 

Significant effects were not found between ‘keel’ and ‘peg’ designs or between flat- and 275 

curve-back. However, implanting the prosthesis into bone substitute material does not take 276 

into account that flat-backed designs require more resection of the subchondral glenoid bone 277 

than curve-backed designs. Thus curve-backed designs may be more advantageous than 278 

indicated in this study. Previous work evaluating commercially available implants, have 279 

indicated that curve-backed and peg implants were superior to flat-backed and keel implants 280 

(Anglin et al., 2001). An FE study also predicted higher rim displacement in the flat-backed 281 

models and associated this with poorer fixation (Iannotti et al., 2005) while a clinical RSA 282 

study suggested that curve-backed peg components perform better (Nuttall et al., 2007). In 283 

contrast and consistent with the results of the present study, the clinical investigation by 284 

Szabo et al. (2005) did not find a significant difference in radiolucent lines between the 285 

curve- and flat-backed glenoid implants and another study showed that intermediate clinical 286 

and radiographic outcomes are comparable between peg and keel implants (Throckmorton et 287 

al., 2010). Nho et al. (2010) and Rahme et al. (2009) also reported comparable radiographic 288 

outcomes of keel and peg implants.  289 

 290 

This study did not find a significant effect of prosthesis conformity. Although greater 291 

conformity led to larger forces being imposed as the subluxation limit was reached, this was 292 

counterbalanced by the ‘humeral head’ component moving further from the centre of the 293 

glenoids with less conformity, so both groups experienced loading which induced similar 294 

rocking motion. Although constrained designs have been superseded, the literature of more 295 

recent semi-constrained TSA designs is inconclusive. A recent retrieval study showed 296 

significantly longer survival of more conforming designs (5.6 years) compared to 3.1 years in 297 

the non-conforming designs (Nho et al., 2010). Also, Oosterom et al. (2004) and Lacroix and 298 
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Prendergast (1997) conclude that conforming designs are more durable. In contrast, Anglin et 299 

al. (2001) and Orr et al. (1988) suggest that the fixation of less conforming designs is stronger 300 

and Walch et al. (2002) showed a reduction of radiolucent lines associated with lower 301 

conformity designs.  302 

 303 

In this, as in other studies, the subluxation force was resisted only by the geometry of the 304 

implant. In reality, the surrounding soft tissues, particularly in regard to less conforming 305 

designs, play a role in resisting subluxation. However, there is very little knowledge of the 306 

extent to which the soft tissues play a role and this greatly complicates the analysis of the 307 

effect of implant conformity. In this study, comparing the subluxation distances between 308 

more conforming and less conforming (3 to 4 mm respectively) shows a difference of 1 mm. 309 

In absolute terms the distance is not high enough to bring large soft tissue effects and in 310 

relative terms a 1 mm difference between conformities is small. 311 

 312 

This study has established a direct link between increases in rim displacement and directly 313 

observed failure in all implant designs. Although previous studies have used rim 314 

displacement as an indirect measure of fixation failure (Anglin et al., 2001; Collins et al., 315 

1992; Oosterom et al., 2004), there was no established link between rim displacement and 316 

loosening. This association provides confidence in the use of the ASTM recommended rim 317 

displacement as an indication of fixation performance.  318 

 319 

Conclusion 320 

This study highlights the importance of implant surface roughness suggesting that roughening 321 

to Ra values greater than 3 µm will result in prostheses that are more likely to outlive the 322 

patient and avoid revision. However, further studies are needed to investigate if the results of 323 
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this in-vitro study will translate to improved performance in clinical practice. Significant 324 

differences were not found in relation to fixation design features of pegs versus keel, curve- 325 

versus flat-backed or conforming versus less conforming glenoid components and suggests 326 

that surgeons do not need to be overly concerned about which particular fixation design to be 327 

used.  328 

 329 

The findings of the study support the use of rim displacement as a measure of fixation failure 330 

and that threshold values (in the present study 0.6 mm) that identifies fixation failure can be 331 

established. 332 
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Figure and Table legends 1 

 2 

Fig. 1: Samples cemented into bone substitute; flat-back peg (top-left) and curve-back keel 3 

(bottom-left). Two LVDTs were used to measure rim displacements at the superior and 4 

inferior parts of the component (right). 5 

 6 

Fig. 2: Failure progression showing three modes of failure; no failure, mid-failure and failure. 7 

 8 

Fig. 3: Subluxation curve of 8 designs (n = 2 samples each). A significant difference in 9 

subluxation loads was found between the groups of implants with more or less conformity (P 10 

= 0.04). 11 

 12 

Fig. 4: Number of cycles to failure for samples of different designs and roughness (+/- SD). 13 

 14 

Fig. 5: Average inferior rim displacements with failure progression (before, at mid-failure 15 

and at failure respectively) for each of the eight roughened designs. Standard deviation is 16 

shown by error bars. Mid-failure: failure crack reached the keel or first peg; Failure: failure 17 

crack reached the implant mid-line. 18 

 19 

Fig. 6: Change in rim displacement with number of cycles in the non-failed, mid-failed and 20 

failed implant groups. Dashed lines are simple extensions to indicate the increase in rim-21 

displacement from the average of the originally all non-failed samples to the rim-22 

displacement when failure was first observed. 23 

 24 

Table I: Overview of designs; two levels of backside roughness; two different fixations, peg 25 

and keel; two different backing shapes, flat-backed (FB) and curve-backed (CB); and two 26 

levels of conformity (larger radial mismatch indicates less conformity). 27 

 28 

Figure Legends
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