459 research outputs found

    Superconductivity in SrFe_(2-x)Co_xAs_2: Internal Doping of the Iron Arsenide Layers

    Full text link
    In the electron doped compounds SrFe_(2-x)Co_xAs_2 superconductivity with T_c up to 20 K is observed for 0.2 < x < 0.4. Results of structure determination, magnetic susceptibility, electrical resistivity, and specific heat are reported. The observation of bulk superconductivity in all thermodynamic properties -- despite strong disorder in the Fe-As layer -- favors an itinerant picture in contrast to the cuprates and renders a p- or d-wave scenario unlikely. DFT calculations find that the substitution of Fe by Co (x > 0.3) leads to the suppression of the magnetic ordering present in SrFe_2As_2 due to a rigid down-shift of the Fe-3d_(x^2-y^2) related band edge in the density of states.Comment: 5 pages, 3 figure

    Cumulative mutagenesis of the basic residues in the 201-218 region of insulin-like growth factor (IGF)-binding protein-5 results in progressive loss of both IGF-I binding and inhibition of IGF-I biological action

    Get PDF
    We have reported previously that mutation of two conserved nonbasic amino acids (G203 and Q209) within the highly basic 201–218 region in the C-terminal domain of IGF-binding protein-5 (IGFBP-5) decreases binding to IGFs. This study reveals that cumulative mutagenesis of the 10 basic residues in this region, to create the C-Term series of mutants, ultimately results in a 15-fold decrease in the affinity for IGF-I and a major loss in heparin binding. We examined the ability of mutants to inhibit IGF-mediated survival of MCF-7 cells and were able to demonstrate that this depended not only upon the affinity for IGF-I, but also the kinetics of this interaction, because IGFBP-5 mutants with similar affinity constants (KD) values, but with different association (Ka) and dissociation (Kd) rate values, had markedly different inhibitory properties. In contrast, the affinity for IGF-I provided no predictive value in terms of the ability of these mutants to enhance IGF action when bound to the substratum. Instead, these C-Term mutants appeared to enhance the actions of IGF-I by a combination of increased dissociation of IGF-IGFBP complexes from the substratum, together with dissociation of IGF-I from IGFBP-5 bound to the substratum. These effects of the IGFBPs were dependent upon binding to IGF-I, because a non-IGF binding mutant (N-Term) was unable to inhibit or enhance the actions of IGF-I. These results emphasize the importance of the kinetics of association/dissociation in determining the enhancing or inhibiting effects of IGFBP-5 and demonstrate the ability to generate an IGFBP-5 mutant with exclusively IGF-enhancing activity

    Building model trains and planes : an autoethnographic investigation of a human occupation.

    Get PDF
    This research paper utilises an autoethnographic method, termed collective autobiography, to explore the nature and meaning of the amateur hobby of building models from childhood to adulthood. Hobbies and leisure activities are areas of human occupation of increasing interest to a variety of disciplines e.g. healthcare. Although model making may concern the miniature representation of any subject, this paper focuses on the construction of model aircraft kits, trains and their layouts. As a complex specific human occupation modelling is revealed as significant to personal wellbeing, and while the activity may start in childhood its associated motivations and required skills develop over a life time. The findings reveal aspects of the nature of the relationship between the modeller, the process of modelling and the final product. In addition they also reveal some elements of the gendered nature of modelling, its role within father-son relationships, and the accommodation of modelling activities within shared domestic spaces. The specific modelling activities described are recognised as having their origins within the culture of post-war baby boomer Britain, and the socioeconomic and technological environment of that period. This recognition necessitates discussion of the modeller as a skilled consumer as well as a creative individual

    Insulin-like growth factor binding protein 5 enhances survival of LX2 human hepatic stellate cells

    Get PDF
    ABSTRACT: BACKGROUND: Expression of insulin-like growth factor binding protein 5 (IGFBP5) is strongly induced upon activation of hepatic stellate cells and their transdifferentiation into myofibroblasts in vitro. This was confirmed in vivo in an animal model of liver fibrosis. Since IGFBP5 has been shown to promote fibrosis in other tissues, the aim of this study was to investigate its role in the progression of liver fibrosis. METHODS: The effect of IGFBP5 was studied in LX2 cells, a model for partially activated hepatic stellate cells, and in human primary liver myofibroblasts. IGFBP5 signalling was modulated by the addition of recombinant protein, by lentiviral overexpression, and by siRNA mediated silencing. Furthermore, the addition of IGF1 and silencing of the IGF1R was used to investigate the role of the IGF-axis in IGFBP5 mediated effects. RESULTS: IGFBP5 enhanced the survival of LX2 cells and myofibroblasts via a >50% suppression of apoptosis. This effect of IGFBP5 was not modulated by the addition of IGF1, nor by silencing of the IGF1R. Additionally, IGFBP5 was able to enhance the expression of established pro-fibrotic markers, such as collagen Ialpha1, TIMP1 and MMP1. CONCLUSION: IGFBP5 enhances the survival of (partially) activated hepatic stellate cells and myofibroblasts by lowering apoptosis via an IGF1-independent mechanism, and enhances the expression of profibrotic genes. Its lowered expression may, therefore, reduce the progression of liver fibrosi

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-BΛ‰0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Ξ”md=0.493Β±0.012(stat)Β±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} psβˆ’1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qqΜ… continuum events near the Ξ₯(4S) resonance are presented. Using 20.8 fb-1 of data on the Ξ₯(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(Bβƒ—Ds+X)=(10.93Β±0.19Β±0.58Β±2.73)% and B(Bβƒ—Ds*+X)=(7.9Β±0.8Β±0.7Β±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections Οƒ(e+e-β†’Ds+X)Γ—B(Ds+→φπ+)=7.55Β±0.20Β±0.34pb and Οƒ(e+e-β†’Ds*Β±X)Γ—B(Ds+→φπ+)=5.8Β±0.7Β±0.5pb are measured at center-of-mass energies about 40 MeV below the Ξ₯(4S) mass. The branching fractions Ξ£B(Bβƒ—Ds(*)+D(*))=(5.07Β±0.14Β±0.30Β±1.27)% and Ξ£B(Bβƒ—Ds*+D(*))=(4.1Β±0.2Β±0.4Β±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4Β±0.1Β±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Paricalcitol reduces oxidative stress and inflammation in hemodialysis patients

    Get PDF
    Background: Treatment with selective vitamin D receptor activators such as paricalcitol have been shown to exert an anti-inflammatory effect in patients on hemodialysis, in addition to their action on mineral metabolism and independently of parathyroid hormone (PTH) levels. The objective of this study was to evaluate the additional antioxidant capacity of paricalcitol in a clinical setting. Methods: The study included 19 patients with renal disease on hemodialysis, of whom peripheral blood was obtained for analysis at baseline and three months after starting intravenous paricalcitol treatment. The following oxidizing and inflammatory markers were quantified: malondialdehyde (MDA), nitrites and carbonyl groups, indoleamine 2,3-dioxygenase (IDO), tumor necrosis factor alfa (TNF-Ξ±), interleukin-6 (IL-6), interleukin-18 (IL-18) and C-reactive protein (CRP). Of the antioxidants and anti-inflammatory markers, superoxide dismutase (SOD), catalase, reduced glutathione (GSH), thioredoxin, and interleukin-10 (IL-10) levels were obtained. Results: Baseline levels of oxidation markers MDA, nitric oxide and protein carbonyl groups significantly decreased after three months on paricalcitol treatment, while levels of GSH, thioredoxin, catalase and SOD activity significantly increased. After paricalcitol treatment, levels of the inflammatory markers CRP, TNF-Ξ±, IL-6 and IL-18 were significantly reduced in serum and the level of anti-inflammatory cytokine IL-10 was increased. Conclusions: In renal patients undergoing hemodialysis, paricalcitol treatment significantly reduces oxidative stress and inflammation, two well known factors leading to cardiovascular damageBackground: Treatment with selective vitamin D receptor activators such as paricalcitol have been shown to exert an anti-inflammatory effect in patients on hemodialysis, in addition to their action on mineral metabolism and independently of parathyroid hormone (PTH) levels. The objective of this study was to evaluate the additional antioxidant capacity of paricalcitol in a clinical setting. Methods: The study included 19 patients with renal disease on hemodialysis, of whom peripheral blood was obtained for analysis at baseline and three months after starting intravenous paricalcitol treatment. The following oxidizing and inflammatory markers were quantified: malondialdehyde (MDA), nitrites and carbonyl groups, indoleamine 2,3-dioxygenase (IDO), tumor necrosis factor alfa (TNF-Ξ±), interleukin-6 (IL-6), interleukin-18 (IL-18) and C-reactive protein (CRP). Of the antioxidants and anti-inflammatory markers, superoxide dismutase (SOD), catalase, reduced glutathione (GSH), thioredoxin, and interleukin-10 (IL-10) levels were obtained. Results: Baseline levels of oxidation markers MDA, nitric oxide and protein carbonyl groups significantly decreased after three months on paricalcitol treatment, while levels of GSH, thioredoxin, catalase and SOD activity significantly increased. After paricalcitol treatment, levels of the inflammatory markers CRP, TNF-Ξ±, IL-6 and IL-18 were significantly reduced in serum and the level of anti-inflammatory cytokine IL-10 was increased. Conclusions: In renal patients undergoing hemodialysis, paricalcitol treatment significantly reduces oxidative stress and inflammation, two well known factors leading to cardiovascular damage

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): Study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR β‰₯30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)

    Streptozotocin, Type I Diabetes Severity and Bone

    Get PDF
    As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss

    Dia2 Controls Transcription by Mediating Assembly of the RSC Complex

    Get PDF
    Background: Dia2 is an F-box protein found in the budding yeast, S. cerevisiae. Together with Skp1 and Cul1, Dia2 forms the substrate-determining part of an E3 ubiquitin ligase complex, otherwise known as the SCF. Dia2 has previously been implicated in the control of replication and genome stability via its interaction with the replisome progression complex. Principal Findings: We identified components of the RSC chromatin remodelling complex as genetic interactors with Dia2, suggesting an additional role for Dia2 in the regulation of transcription. We show that Dia2 is involved in controlling assembly of the RSC complex. RSC belongs to a group of ATP-dependent nucleosome-remodelling complexes that controls the repositioning of nucleosomes. The RSC complex is expressed abundantly and its 17 subunits are recruited to chromatin in response to both transcription activation and repression. In the absence of Dia2, RSC-mediated transcription regulation was impaired, with concomitant abnormalities in nucleosome positioning. Conclusions: Our findings imply that Dia2 is required for the correct assembly and function of the RSC complex. Dia2, by controlling the RSC chromatin remodeller, fine-tunes transcription by controlling nucleosome positioning during transcriptional activation and repression
    • …
    corecore