6 research outputs found

    GANGLION POTKOLJENICE – RIJETKA LOKALIZACIJA GANGLIONA

    Get PDF
    Ganglions (hygromas) are cystic tumors of soft tissue filled with jelly like substance. Most often they are localized on hands and feet. Very rarely they are localized in other sites.A very rare localization of the ganglion has been presented here found on the lateral side of the left lower leg starting from the proximal tibiofibular joint

    PREDICTORS OF THE PASSABILITY DURATION OF FEMOROPOPLITEAL BYPASSES

    Get PDF
    The aim of this study was to define predictors of the passability duration of femoropopliteal bypasses on the basis of both own results and medical literature. Documentation studies and comparative methods were used in the study. The subjects are patients of the Pula General hospital, operated in the Surgical ward in the period between January 1, 1991 and December 31, 2001. Predictors of the passability duration of femoropopliteal bypasses was determined by examination of subjects and the comparison to results found in literature. They can be divided into three groups: predictors of fast bypass occlusion, predictors of longer bypass passability, predictors that do not affect the bypass function. Independent predictors of larger amputations were determined separately. The duration of openness of femoropopliteal bypasses applied to patients suffering from occlusive diseases of the arteries in the femoropopliteal segment can be determined based on the preoperatively established state of the drainage path on lower limbs, on the grade of circulatory insufficiency at the moment of surgery, on the type of femoropoliteal bypass (either by great saphenous vein or by artificial bypass) as well as based on other factors

    Report on SHAFE policies, strategies and funding

    Full text link
    The objective of Working Group (WG) 4 of the COST Action NET4Age-Friendly is to examine existing policies, advocacy, and funding opportunities and to build up relations with policy makers and funding organisations. Also, to synthesize and improve existing knowledge and models to develop from effective business and evaluation models, as well as to guarantee quality and education, proper dissemination and ensure the future of the Action. The Working Group further aims to enable capacity building to improve interdisciplinary participation, to promote knowledge exchange and to foster a cross-European interdisciplinary research capacity, to improve cooperation and co-creation with cross-sectors stakeholders and to introduce and educate students SHAFE implementation and sustainability (CB01, CB03, CB04, CB05). To enable the achievement of the objectives of Working Group 4, the Leader of the Working Group, the Chair and Vice-Chair, in close cooperation with the Science Communication Coordinator, developed a template (see annex 1) to map the current state of SHAFE policies, funding opportunities and networking in the COST member countries of the Action. On invitation, the Working Group lead received contributions from 37 countries, in a total of 85 Action members. The contributions provide an overview of the diversity of SHAFE policies and opportunities in Europe and beyond. These were not edited or revised and are a result of the main areas of expertise and knowledge of the contributors; thus, gaps in areas or content are possible and these shall be further explored in the following works and reports of this WG. But this preliminary mapping is of huge importance to proceed with the WG activities. In the following chapters, an introduction on the need of SHAFE policies is presented, followed by a summary of the main approaches to be pursued for the next period of work. The deliverable finishes with the opportunities of capacity building, networking and funding that will be relevant to undertake within the frame of Working Group 4 and the total COST Action. The total of country contributions is presented in the annex of this deliverable

    A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study

    No full text
    © 2023Background: The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene–drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed. Methods: We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug–gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug–gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug–gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants. Findings: Between March 7, 2017, and June 30, 2020, 41 696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54–0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61–0·79]; p <0·0001). Interpretation: Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe. Funding: European Union Horizon 2020
    corecore