532 research outputs found

    Edge instabilities of topological superconductors

    Full text link
    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of d_{xy}-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s-wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.Comment: 4 pages, 3 figure

    The Roles of Entropy and Kinetics in Structure Prediction

    Get PDF
    Background: Here we continue our efforts to use methods developed in the folding mechanism community to both better understand and improve structure prediction. Our previous work demonstrated that Rosetta’s coarse-grained potentials may actually impede accurate structure prediction at full-atom resolution. Based on this work we postulated that it may be time to work completely at full-atom resolution but that doing so may require more careful attention to the kinetics of convergence. Methodology/Principal Findings: To explore the possibility of working entirely at full-atom resolution, we apply enhanced sampling algorithms and the free energy theory developed in the folding mechanism community to full-atom protein structure prediction with the prominent Rosetta package. We find that Rosetta’s full-atom scoring function is indeed able to recognize diverse protein native states and that there is a strong correlation between score and Ca RMSD to the native state. However, we also show that there is a huge entropic barrier to folding under this potential and the kinetics of folding are extremely slow. We then exploit this new understanding to suggest ways to improve structure prediction. Conclusions/Significance: Based on this work we hypothesize that structure prediction may be improved by taking a more physical approach, i.e. considering the nature of the model thermodynamics and kinetics which result from structur

    Pseudodoping of Metallic Two-Dimensional Materials by The Supporting Substrates

    Get PDF
    We demonstrate how hybridization between a two-dimensional material and its substrate can lead to an apparent heavy doping, using the example of monolayer TaS2_2 grown on Au(111). Combining ab-initio\textit{ab-initio} calculations, scanning tunneling spectroscopy experiments and a generic model, we show that strong changes in Fermi areas can arise with much smaller actual charge transfer. This mechanism, which we refer to as pseudodoping, is a generic effect for metallic two-dimensional materials which are either adsorbed to metallic substrates or embedded in vertical heterostructures. It explains the apparent heavy doping of TaS2_2 on Au(111) observed in photoemission spectroscopy and spectroscopic signatures in scanning tunneling spectroscopy. Pseudodoping is associated with non-linear energy-dependent shifts of electronic spectra, which our scanning tunneling spectroscopy experiments reveal for clean and defective TaS2_2 monolayer on Au(111). The influence of pseudodoping on the formation of charge ordered, magnetic, or superconducting states is analyzed.Comment: arXiv admin note: substantial text overlap with arXiv:1609.0022

    Seismic tomography is locally ill-posed

    Get PDF
    We develop a general convergence analysis for a class of inexact Newton-type regularizations for stably solving nonlinear ill-posed problems. Each of the methods under consideration consists of two components: the outer Newton iteration and an inner regularization scheme which, applied to the linearized system, provides the update. In this paper we give a novel and unified convergence analysis which is not confined to a specific inner regularization scheme but applies to a multitude of schemes including Landweber and steepest decent iterations, iterated Tikhonov method, and method of conjugate gradients

    Crystalline and electronic structure of single-layer TaS2_2

    Get PDF
    Single-layer TaS2_2 is epitaxially grown on Au(111) substrates. The resulting two-dimensional crystals adopt the 1H polymorph. The electronic structure is determined by angle-resolved photoemission spectroscopy and found to be in excellent agreement with density functional theory calculations. The single layer TaS2_2 is found to be strongly n-doped, with a carrier concentration of 0.3(1) extra electrons per unit cell. No superconducting or charge density wave state is observed by scanning tunneling microscopy at temperatures down to 4.7 K.Comment: 6 pages, 4 figure

    cGMP kinase I regulates glucagon release

    Get PDF
    © 2009 Leiss et al; licensee BioMed Central Ltd. Blood glucose levels are tightly controlled by the two peptide hormones glucagon and insulin. At hyperglycaemia, B-cells in the islets of Langerhans secrete insulin, whereas islet A-cells release glucagon at hypoglycaemia to stimulate e.g. glucose production in the liver. Previously, an important role for nitric oxide (NO) in the development of type-1 diabetes mellitus (insulin dependent diabetes mellitus) was reported [1]. The mechanisms are unknown whereby NO modulates islet (mal-)function. We hypothesized that NO signals via the cGMP/cGMP kinase I (cGKI) pathway to modulate the endocrine control of blood glucose levels. Glucose homeostasis was studied in the conventional cGKI knockouts (KOs) and in cGKI rescue mice (RM) [2] in comparison to age- and littermat

    Pancreatic Polypeptide but Not Other Members of the Neuropeptide Y Family Shows a Moderate Association With Perceived Anxiety in Obese Men

    Get PDF
    Neuropeptide Y (NPY), peptide tyrosine tyrosine (PYY), and pancreatic polypeptide (PP) are important mediators in the bidirectional communication along the gut-brain-axis. Best known for their role in the regulation of appetite and food intake they are considered to play a crucial role in the development of obesity. Additionally, mounting evidence indicates a regulatory function in anxiety, mood and stress resilience with potential sex differences. In the present study, we examined the associations of NPY, PYY, and PP plasma levels with anxiety, depressiveness and perceived stress in obese patients. We analyzed 144 inpatients (90 female, 54 male, BMI mean: 49.4 kg/m(2)) in a naturalistic treatment setting for obesity and its somatic and mental comorbidities. Fasting blood samples were taken, and patients completed psychometric self-assessment questionnaires (GAD-7, PHQ-9, PSQ-20) within the first week after admission and before discharge. Plasma concentrations of the peptides were measured by ELISA. Women showed significant higher anxiety (GAD-7: 8.13 +/- 5.67 vs. 5.93 +/- 5.42, p = 0.04) and stress scores (PSQ-20: 52.62 +/- 23.5 vs. 41.23 +/- 22.53, p = 0.01) than men. In the longitudinal analysis women with a clinically relevant improvement of anxiety ( \u3e /= 5 points on GAD-7, p \u3c 0.001) also showed significant improvements in depression (PHQ-9: 38%, p = 0.002) and PSQ-20 scores (23%, p = 0.005) while anxiety-improved male patients only improved in the subscale tension of the PSQ-20 (34%, p = 0.02). In men we observed a positive correlation of PP with anxiety scores (GAD-7: r = 0.41, p = 0.007) and with age (r = 0.49, p = 0.001) on admission while NPY negatively correlated with age (r = -0.38, p = 0.01). In contrast, there were no significant associations (p \u3e 0.05) in female subjects in the cross-sectional as well as in the longitudinal analysis. In conclusion, women suffering from morbid obesity showed greater psychological comorbidity and considerable interactions among them. Despite that we solely observed associations of PP with anxiety and age with NPY and PP in men, suggesting a possible influence of sex hormones on the NPY system. However, improvement of anxiety scores did not lead to significant changes in NPY

    Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels

    Get PDF
    The TRPM group of cation channels plays diverse roles ranging from sensory signaling to Mg2+ homeostasis. In most metazoan organisms the TRPM subfamily is comprised of multiple members, including eight in humans. However, the Drosophila TRPM subfamily is unusual in that it consists of a single member. Currently, the functional requirements for this channel have not been reported. Here, we found that the Drosophila TRPM protein was expressed in the fly counterpart of mammalian kidneys, the Malpighian tubules, which function in the removal of electrolytes and toxic components from the hemolymph. We generated mutations in trpm and found that this resulted in shortening of the Malpighian tubules. In contrast to all other Drosophila trp mutations, loss of trpm was essential for viability, as trpm mutations resulted in pupal lethality. Supplementation of the diet with a high concentration of Mg2+ exacerbated the phenotype, resulting in growth arrest during the larval period. Feeding high Mg2+ also resulted in elevated Mg2+ in the hemolymph, but had relatively little effect on cellular Mg2+. We conclude that loss of Drosophila trpm leads to hypermagnesemia due to a defect in removal of Mg2+ from the hemolymph. These data provide the first evidence for a role for a Drosophila TRP channel in Mg2+ homeostasis, and underscore a broad and evolutionarily conserved role for TRPM channels in Mg2+ homeostasis

    A practical Java tool for small-molecule compound appraisal

    Get PDF
    The increased use of small-molecule compound screening by new users from a variety of different academic backgrounds calls for adequate software to administer, appraise, analyse and exchange information obtained from screening experiments. While software and spreadsheet solutions exist, there is a need for software that can be easily deployed and is convenient to use.The Java application cApp addresses this need and aids in the handling and storage of information on small-molecule compounds. The software is intended for the appraisal of compounds with respect to their physico-chemical properties, analysis in relation to adherence to likeness rules as well as recognition of pan-assay interference components and cross-linking with identical entries in the PubChem Compound Database. Results are displayed in a tabular form in a graphical interface, but can also be written in an HTML or PDF format. The output of data in ASCII format allows for further processing of data using other suitable programs. Other features include similarity searches against user-provided compound libraries and the PubChem Compound Database, as well as compound clustering based on a MaxMin algorithm.cApp is a personal database solution for small-molecule compounds which can handle all major chemical formats. Being a standalone software, it has no other dependency than the Java virtual machine and is thus conveniently deployed. It streamlines the analysis of molecules with respect to physico-chemical properties and drug discovery criteria; cApp is distributed under the GNU Affero General Public License version 3 and available from http://www.structuralchemistry.org/pcsb/. To download cApp, users will be asked for their name, institution and email address. A detailed manual can also be downloaded from this site, and online tutorials are available at http://www.structuralchemistry.org/pcsb/capp.php
    • …
    corecore