33 research outputs found
Do Quiescent and Active Galaxies Have Different M_(BH)-Ï* Relations?
To investigate the validity of the assumption that quiescent galaxies and active galaxies follow the same black hole mass (M_BH)-stellar velocity dispersion (Ï*) relation, as required for the calibration of M_BH estimators for broad line active galactic nuclei (AGNs), we determine and compare the M_BH-Ï* relations, respectively, for quiescent and active galaxies. For the quiescent galaxy sample, composed of 72 dynamical M_BH measurements, we update Ï* for 28 galaxies using homogeneous H-band measurements that are corrected for galaxy rotation. For active galaxies, we collect 25 reverberation-mapped AGNs and improve Ï* measurement for two objects. Combining the two samples, we determine the virial factor f, first by scaling the active galaxy sample to the M_BH-Ï* relation of quiescent galaxies, and second by simultaneously fitting the quiescent and active galaxy samples, as f=5.1^(+1.5)_(-1.1) and f=5.9^(+2.1)_(-1.5), respectively. The M_BH-Ï* relation of active galaxies appears to be shallower than that of quiescent galaxies. However, the discrepancy is caused by a difference in the accessible M_BH distribution at given Ï*, primarily due to the difficulty of measuring reliable stellar velocity dispersion for the host galaxies of luminous AGNs. Accounting for the selection effects, we find that active and quiescent galaxies are consistent with following intrinsically the same M_BH-Ï* relation
Calibrating Stellar Velocity Dispersions Based on Spatially Resolved H-band Spectra for Improving the M_(BH)-Ï_* Relation
To calibrate stellar velocity dispersion measurements from optical and near-IR stellar lines, and to improve the black hole mass (M_(BH))-stellar velocity dispersion (Ï_*) relation, we measure Ï_* based on high-quality H-band spectra for a sample of 31 nearby galaxies, for which dynamical M_(BH) is available in the literature. By comparing velocity dispersions measured from stellar lines in the H-band with those measured from optical stellar lines, we find no significant difference, suggesting that optical and near-IR stellar lines represent the same kinematics and that dust effect is negligible for early-type galaxies. Based on the spatially resolved rotation and velocity dispersion measurements along the major axis of each galaxy, we find that a rotating stellar disk is present for 80% of galaxies in the sample. For galaxies with a rotation component, Ï_* measured from a single aperture spectrum can vary by up to ~20%, depending on the size of the adopted extraction aperture. To correct for the rotational broadening, we derive luminosity-weighted Ï_* within the effective radius of each galaxy, providing uniformly measured velocity dispersions to improve the M_(BH)-Ï_* relation
Dobrava-Belgrade Hantavirus from Germany Shows Receptor Usage and Innate Immunity Induction Consistent with the Pathogenicity of the Virus in Humans
BACKGROUND: Dobrava-Belgrade virus (DOBV) is a European hantavirus causing hemorrhagic fever with renal syndrome (HFRS) in humans with fatality rates of up to 12%. DOBV-associated clinical cases typically occur also in the northern part of Germany where the virus is carried by the striped field mouse (Apodemus agrarius). However, the causative agent responsible for human illness has not been previously isolated. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on characterization of a novel cell culture isolate from Germany obtained from a lung tissue of "spillover" infected yellow necked mouse (A. flavicollis) trapped near the city of Greifswald. Phylogenetic analyses demonstrated close clustering of the new strain, designated Greifswald/Aa (GRW/Aa) with the nucleotide sequence obtained from a northern German HFRS patient. The virus was effectively blocked by specific antibodies directed against ÎČ3 integrins and Decay Accelerating Factor (DAF) indicating that the virus uses same receptors as the highly pathogenic Hantaan virus (HTNV). In addition, activation of selected innate immunity markers as interferon ÎČ and λ and antiviral protein MxA after viral infection of A549 cells was investigated and showed that the virus modulates the first-line antiviral response in a similar way as HTNV. CONCLUSIONS/SIGNIFICANCE: In summary, our study reveals novel data on DOBV receptor usage and innate immunity induction in relationship to virus pathogenicity and underlines the potency of German DOBV strains to act as human pathogen
NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods
Glycosylation is a topic of intense current interest in the
development of biopharmaceuticals because it is related
to drug safety and efficacy. This work describes results of
an interlaboratory study on the glycosylation of the Primary
Sample (PS) of NISTmAb, a monoclonal antibody
reference material. Seventy-six laboratories from industry,
university, research, government, and hospital sectors
in Europe, North America, Asia, and Australia submit-
Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia;
23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. KovacË icÂŽ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia
State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany;
26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada;
27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739â8530 Japan; 28ImmunoGen,
830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College,
ul. Michalowskiego 12, 31â126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore,
Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass
Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363â883 Korea
(South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro
Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363â700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden
University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon,
Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale
BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk
University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse
1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424
Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth,
New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive
Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living
Systems (ExCELLS), National Institutes of Natural Sciences, 5â1 Higashiyama, Myodaiji, Okazaki 444â8787 Japan; 46Graduate School of
Pharmaceutical Sciences, Nagoya City University, 3â1 Tanabe-dori, Mizuhoku, Nagoya 467â8603 Japan; 47Medical & Biological Laboratories
Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464â0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South
Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health
Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158â8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts
01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department
of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for
Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North
Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey
08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20â22 rue Henri et Gilberte Goudier 63200
RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory,
Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Childrenâs GMP LLC, St. Jude Childrenâs
Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1â5 Muromati 1-Chome, Nishiku,
Kobe, 651â2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda
Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry,
Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California
94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District,
Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave,
Davis, California 95616; 70HorvaÂŽ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral
School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics
Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary;
72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University
of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of
Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg,
Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry,
University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and
Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tuš bingen,
Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for
Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department
of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007
Authorâs ChoiceâFinal version open access under the terms of the Creative Commons CC-BY license.
Received July 24, 2019, and in revised form, August 26, 2019
Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677
ER: NISTmAb Glycosylation Interlaboratory Study
12 Molecular & Cellular Proteomics 19.1
Downloaded from https://www.mcponline.org by guest on January 20, 2020
ted a total of 103 reports on glycan distributions. The
principal objective of this study was to report and compare
results for the full range of analytical methods presently
used in the glycosylation analysis of mAbs. Therefore,
participation was unrestricted, with laboratories
choosing their own measurement techniques. Protein glycosylation
was determined in various ways, including at
the level of intact mAb, protein fragments, glycopeptides,
or released glycans, using a wide variety of methods for
derivatization, separation, identification, and quantification.
Consequently, the diversity of results was enormous,
with the number of glycan compositions identified by
each laboratory ranging from 4 to 48. In total, one hundred
sixteen glycan compositions were reported, of which 57
compositions could be assigned consensus abundance
values. These consensus medians provide communityderived
values for NISTmAb PS. Agreement with the consensus
medians did not depend on the specific method or
laboratory type. The study provides a view of the current
state-of-the-art for biologic glycosylation measurement
and suggests a clear need for harmonization of glycosylation
analysis methods. Molecular & Cellular Proteomics
19: 11â30, 2020. DOI: 10.1074/mcp.RA119.001677.L
Hantaviruses and the intrinsic antiviral interferon system
Infolge einer Infektion mit Hantaviren sterben bis zu 15% der mit
hÀmorrhagischem Fieber mit renalem Syndrom und bis zu 40% der mit Hantaviralen
Cardiopulmonalen Syndrom erkrankten Patienten. Die PathogenitÀtsmechanismen
die zu diesen Syndromen fĂŒhren und Virulenzfaktoren der Hantaviren sind nur
ansatzweise charakterisiert. Die erfolgreiche primÀre Infektion nach der
Virusaufnahme ist eine wesentliche Voraussetzung fĂŒr die Pathogenese. In
dieser Phase der Infektion vermehren sich pathogene Hantaviren in vitro
deutlich effizienter als nicht pathogene. Im Rahmen der Studie wurden virale
und zellulĂ€re Faktoren identifiziert und charakterisiert, die fĂŒr die
Etablierung der primĂ€ren Infektion und folglich auch fĂŒr die Virulenz der
Viren in vivo eine wichtige Rolle spielen. In einem ersten Schritt der Studie
wurde eine Fokusaufreinigungsmethode fĂŒr nicht zytolytische Viren entwickelt.
Diese Methode erlaubt die Klonierung von Hantaviren und auf diese Weise auch
die Entfernung von defekten interferierenden Viruspartikeln. Defekte Partikel
können die Effizient der Virusvermehrung und auch angeborene Immunreaktionen
modulieren. Im Rahmen der vorliegenden Studie konnte auĂerdem gezeigt werden,
dass die Verwendung von Referenzviren mit unterschiedlichen Anteilen defekter
Viruspartikel einen starken Einfluss auf die Quantifizierung Virus-
neutralisierender Antikörper hat. Dieser Befund unterstreicht zusÀtzlich die
Bedeutung der etablierten Fokusaufreinigungsmethode. Diese Methode bildet eine
wichtige und solide Grundlage fĂŒr den funktionellen Vergleich pathogener und
nicht-pathogener Referenzviren. Um die Interaktion zwischen Hantaviren und dem
angeborenen Immunsystem zu charakterisieren, wurde die Wirkung von Interferon-
alpha (IFN) und Interferon-gamma (IFN) auf das hochpathogene HTNV bestimmt.
Obwohl diese IFN-Typen teilweise unterschiedliche Gene induzieren, wurde HTNV
durch beide IFNe mit der gleichen Effizienz gehemmt. Die Ergebnisse fĂŒhrten zu
der Hypothese, dass die Hemmung von HTNV durch Gene vermittelt wird, die
sowohl durch IFN als auch IFN moduliert werden. FrĂŒhere Studien hatten
gezeigt, dass MxA per se ausreichend ist, um eine HTNV-Infektion in vitro zu
verhindern. Im Gegensatz zu diesen Befunden, ergaben unsere Untersuchungen
keine Hinweise auf einen Beitrag von MxA an der Hemmung von HTNV in
IFN-behandelten Zellen. Die Effizienz der Hemmung von HTNV war unverÀndert,
ungeachtet ob MxA gebildet wurde oder nicht. Dieses Ergebnis deutet darauf
hin, dass redundante Mechanismen existieren, die fĂŒr die antivirale Wirkung
und die effiziente IFN-vermittelte Hemmung entscheidend sind. Diese Ergebnisse
bestÀtigen die oben skizzierte Hypothese, dass die entscheidenden antiviralen
Effektoren gegen HTNV sowohl durch IFN als auch durch IFN induziert werden
sollten. Testsysteme fĂŒr die Untersuchung der Mechanismen, die zu HFRS oder
HCPS fĂŒhren, sind nur ansatzweise entwickelt. Um Hinweise auf diese
Mechanismen zu erhalten, wurde die Wechselwirkung zwischen Wirt und Virus -
auf der einen Seite mit dem pathogenen HTNV und auf der anderen Seite mit dem
nicht pathogenen PHV verglichen. Im Rahmen dieser Vergleichsstudie konnte
festgestellt werden, dass pathogene und nicht pathogene Hantaviren angeborene
Immunreaktionen ĂŒber die Ubiquitin-Ligase TRAF3 auslösen. Weiterhin konnte
erstmalig gezeigt werden, dass hoch-pathogene Hantaviren angeborene
Immunreaktionen ĂŒber TLR3 auslösen können. Auf Grundlage der differenziellen
Virus-Wirt-Interaktion wurde folgendes Modell aufgestellt: Die durch nicht
pathogene Hantaviren frĂŒhzeitig ausgelösten angeborenen antiviralen
Immunreaktionen blockieren die Infektion vollstÀndig. Pathogene Hantaviren
hingegen lösen die antivirale Immunreaktion zu spÀt aus, sodass die
Entwicklung einer primÀren und systemischen Infektion ermöglicht wird. In
Folge der anhaltenden Virusproduktion, kommt es zu einer EntzĂŒndungsreaktion,
die Effektorzellen des angeborenen und des erworbenen Immunsystems rekrutiert
und aktiviert. Diese durch die Infektion ausgelöste systemische Immunreaktion
könnte fĂŒr die Pathogenese entscheidend sein. Reverse Genetik System sind
bisher fĂŒr Hantaviren nicht ethabliert. Die Herstellung und Isolierung von
Reassortanten nach einer Ko-Infektion mit mehreren Viren ist gegenwÀrtig der
einzige Weg, mit dessen Hilfe definierte Hantavirusvarianten hergestellt
werden können. Um Virulenzfaktoren eindeutig zu identifizieren, wurden
Reassortanten zwischen einem pathogenen und einem nicht pathogenen Hantavirus
hergestellt. Die funktionelle Analyse dieser Reassortanten im Vergleich zu den
parentalen Viren zeigte, dass die S-RNA, die fĂŒr das Nukleokapsidprotein und
die L-RNA, die fĂŒr die RNA-abhĂ€ngige RNA Polymerase kodieren, entscheidend
sind fĂŒr die Virusspezies-spezifische Virus-Wirt-Interaktion. Abgesehen von
den immunogenen Eigenschaften der Glykoproteine des pathogenen PUUV, zeigte
die hergestellte Reassortante denselben PhÀnotyp, wie das nicht pathogene
parentale PHV. Um zu testen, ob diese Reassortante als Lebend-Impfstoff zum
Schutz vor einer PUUV Infektion geeignet sein könnte sind weitere Studien
erforderlich. Ăber diesen Aspekt hinaus, erlauben die erzielten Ergebnisse
eine fokussierte Charakterisierung der molekularen Wirkmechanismen, die fĂŒr
die differenzielle Aktivierung antiviraler Immunreaktionen verantwortlich
sind. Hantaviren vermehren sich primÀr in Endothelzellen können aber auch in
alveolar Makrophagen und Dentritischen Zellen replizieren. Wie die Viren sich
nach der primÀren Infektion im Wirt ausbreiten ist gegenwÀrtig nicht bekannt.
Ăber die Migration infizierter dendritischer Zellen könnte das Virus in die
Lymphknoten gelangen und von dort die systemische Infektion auslösen. WÀhrend
der systemischen Infektion kommt es teilweise zu irreversiblen
SchockzustÀnden, die i. d. R. tödlich verlaufen. Erstmalig konnten wir zeigen,
dass in situ gereifte humane Mastzellen mit Hantaviren infiziert und durch die
Infektion aktiviert werden können. Diese Ergebnisse begrĂŒnden die Hypothese,
dass auch Mastzellen im Zuge der systemischen Infektion infiziert werden und
durch die Sezernierung von EntzĂŒndungsmediatoren an der AusprĂ€gung der
Symptomatik beteiligt sein könnten. Die therapeutische Stabilisierung von
Mastzellen in dieser kritischen Phase der Infektion könnte geeignet sein, die
AusprÀgung irreversibler SchockzustÀnde und letale KrankheitsverlÀufe zu
verhindern. In dieser Arbeit sind Studien zusammengefasst, auf deren Grundlage
konkrete Hypothesen zur Virulenz und Pathogenese der Hantaviren im Menschen
aufgestellt werden konnten. Eine FortfĂŒhrung der Untersuchungen, angelehnt an
diese Hypothesen, kann zur Entwicklung neuer Hantavirus-Impfstoffe und zur
Verbesserung der Behandlungsoptionen fĂŒr infizierte Patienten fĂŒhren.Hantavirus infection can cause hemorrhagic fever with renal syndrome and
hantavirus cardiopulmonary syndrome with case fatality ratios up to 15% and
40%, respectively. The virulence factors and mechanisms responsible for these
syndromes are not known. Successful primary infection after uptake of the
virus is crucial for development of syndromes. During primary infection
pathogenic hantaviruses propagate with higher efficiency compared to non
pathogenic in type I interferon (IFN) -competent cells. In the presented study
viral and cellular factors important for establishment of primary infection
were identified. These factors might be important also for the virulence of
hantaviruses in humans. Initially a focus purification method was established
for non cytolytic viruses. This method allows removing of defective
interfering virus particles and cloning of infectious hantaviruses. Defective
particles can modulate the efficiency of virus propagation and innate immune
reactions. Furthermore, different amounts of defective particles present in
reference virus material can have a significant influence on quantification of
neutralizing antibodies. This finding underscores the importance of the
established focus purification method, which is an important and solid basis
for the functional analysis of pathogenic and non-pathogenic hantaviruses. To
characterize the interaction of hantaviruses and the innate immune system the
effect of IFN and IFN on the pathogenic Hantaan virus (HTNV) was
determined. IFNs induce a huge set of different genes and at least some of
these genes are induced both by IFN and IFN. Replication of HTNV was blocked
with the same efficiency. This finding suggest that the observed inhibition is
mediated by genes which are induced by both IFNs. Previous studies indicated
that the IFN-inducible MxA protein can prevent HTNV infection in vitro. In our
studies MxA was not decisive for IFN-induced inhibition of HTNV.
Irrespectively whether MxA was expressed or not, the antiviral efficiency was
not impaired. This result implies that redundant mechanisms contribute to
prevent HTNV propagation. This interpretation is consistent with the
hypothesis that decisive antiviral effectors are induced both by IFN and
IFN. Experimental systems to analyze the mechanisms responsible for
hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome
are not available. We analysed the interaction of the host cell with
pathogenic and non pathogenic hantaviruses in vitro to get an idea about the
mechanism which might be decisive for the virulence in vitro. This study
revealed that pathogenic and non pathogenic hantaviruses elicit innate
responses via recruitment of the ubiquitin ligase TRAF3. Furthermore, the
study revealed that pathogenic hantaviruses can be recognized by TLR3. Based
on this finding it was proposed that early activation of antiviral responses
by non pathogenic hantaviruses prevent infection completely. However,
pathogenic hantaviruses induce antiviral immune reactions in a retarded manner
which might allow establishment of primary infection, propagation, and
dissemination in vivo. Systemic infection might cause inflammatory immune
reactions and recruitment of effector cells of the innate and acquired immune
system. Thus, modulation of the immediate antiviral immune response seems to
be a key factor for the virulence of hantaviruses in humans. Reverse genetic
systems are not available for hantaviruses. Isolation of reassortants after
coinfection of cells with different viruses currently is the only way to
produce defined hantavirus variants. To identify virulence factors
reassortants between pathogenic and non pathogenic hantaviruses were produced.
Functional analysis of these reassortants in line with the parental viruses
demonstrated that the S-RNA, coding for the nucleocapsid protein and the
L-RNA, coding for the RNA-dependent RNA polymerase, determine the observed
virus species specific virus host interaction. The produced reassortant
revealed the immunogenic properties of the pathogenic Puumal hantavirus but
all other characteristic features of the non pathogenic Prospect Hill
hantavirus. Further studies are required to test whether the reassortant might
be used as attenuated vaccine against an infection with Puumala virus.
Furthermore, these results allow a focused characterisation of the molecular
mechanisms responsible for the differential activation of antiviral immune
reactions. Hantaviruses primarily replicate in endothelial cells, but also
alveolar macrophages and dendritic cells have been reported to support viral
replication. How viruses disseminate after primary infection is unclear. With
infected macrophages and dendritic cells the virus might be transported to
lymph nodes and spread further to establish a systemic infection. During
systemic infection irreversible shock is observed in server cases which
generally lead to death of the patient. Our data demonstrate that hantaviruses
can infect and activate in situ maturated human mast cells. These results lead
to the hypothesis that mast cell can be infected during systemic infection and
secretion of inflammatory mediators could contribute to the observed symptoms.
If true stabilisation of mast cells in this critical phase of the infection
might be an option to prevent shock and the lethal course of the disease.
Taken together, this study provides the basis for a concrete hypothesis which
can explain hantavirus species specific virulence and pathogenesis in humans.
Based on the developed model further studies might lead to development of
novel hantavirus vaccines and novel options to treat infected patient
Weight Loss Trajectories and Related Factors in a 16-Week Mobile Obesity Intervention Program: Retrospective Observational Study
BackgroundIn obesity management, whether patients lose â„5% of their initial weight is a critical factor in clinical outcomes. However, evaluations that take only this approach are unable to identify and distinguish between individuals whose weight changes vary and those who steadily lose weight. Evaluation of weight loss considering the volatility of weight changes through a mobile-based intervention for obesity can facilitate understanding of an individualâs behavior and weight changes from a longitudinal perspective.
ObjectiveThe aim of this study is to use a machine learning approach to examine weight loss trajectories and explore factors related to behavioral and app use characteristics that induce weight loss.
MethodsWe used the lifelog data of 13,140 individuals enrolled in a 16-week obesity management program on the health care app Noom in the United States from August 8, 2013, to August 8, 2019. We performed k-means clustering with dynamic time warping to cluster the weight loss time series and inspected the quality of clusters with the total sum of distance within the clusters. To identify use factors determining clustering assignment, we longitudinally compared weekly use statistics with effect size on a weekly basis.
ResultsThe initial average BMI value for the participants was 33.6 (SD 5.9) kg/m2, and it ultimately reached 31.6 (SD 5.7) kg/m2. Using the weight log data, we identified five clusters: cluster 1 (sharp decrease) showed the highest proportion of participants who reduced their weight by >5% (7296/11,295, 64.59%), followed by cluster 2 (moderate decrease). In each comparison between clusters 1 and 3 (yo-yo) and clusters 2 and 3, although the effect size of the difference in average meal record adherence and average weight record adherence was not significant in the first week, it peaked within the initial 8 weeks (Cohen d>0.35) and decreased after that.
ConclusionsUsing a machine learning approach and clustering shape-based time series similarities, we identified 5 weight loss trajectories in a mobile weight management app. Overall adherence and early adherence related to self-monitoring emerged as potential predictors of these trajectories
Hantavirus-induced immunity in rodent reservoirs and humans
Contact: Fax: 1 49 3 8351 7192 e-mail: [email protected] audienceHantaviruses are predominantly rodent-borne pathogens, although recently novel shrew-associated hantaviruses were found. Within natural reservoir hosts, hantairuses do not cause obvious pathogenetic effects; transmission to humans, however, can lead to hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome, depending on the virus species involved. This review is focussed on the recent knowledge on hantavirus-induced immune responses in rodent reservoirs and humans and their impact on susceptibility, transmission, and outcome of hantavirus infections. In addition, this review incorporates a discussion on the potential role of direct cell-virus interactions in the pathogenesis of hantavirus infections in humans. Finally, questions for further research efforts on the immune responses in potential hantavirus reservoir hosts and humans are summarized