184 research outputs found

    Peripheral blood gene expression: it all boils down to the RNA collection tubes

    Get PDF
    Background: Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene and Tempus tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results: RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × 10 -5 and p = 1.95 × 10 -3 in PAXgene and Tempus tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene and Tempus tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion: RNA obtained from PAXgene and Tempus tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene and Tempus differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes.</p

    Subsurface hydrogen storage controlled by small-scale rock heterogeneities

    Full text link
    Subsurface porous rocks have the potential to store large volumes of hydrogen (H2_2) required for transitioning towards a H2_2-based energy future. Understanding the flow and trapping behavior of H2_2 in subsurface storage systems, which is influenced by pore-scale heterogeneities inherent to subsurface rocks, is crucial to reliably evaluate the storage efficiency of a geological formation. In this work, we performed 3D X-ray imaging and flow experiments to investigate the impact of pore-scale heterogeneity on H2_2 distribution after its cyclic injection (drainage) and withdrawal (imbibition) from a layered rock sample, characterized by varying pore and throat sizes. Our findings reveal that even subtle variations in rock structure and properties significantly influence H2_2 displacement and storage efficiency. During drainage, H2_2 follows a path consisting of large pores and throats, bypassing the majority of the low permeability rock layer consisting of smaller pores and throats. This bypassing substantially reduces the H2_2 storage capacity. Moreover, due to the varying pore and throat sizes in the layered sample, depending on the experimental flow strategy, we observe a higher H2_2 saturation after imbibition compared to drainage, which is counterintuitive and opposite to that observed in homogeneous rocks. These findings emphasize that small-scale rock heterogeneity, which is often unaccounted for in reservoir-scale models, can play a vital role in the displacement and trapping of H2_2 in subsurface porous media

    Characterization of Hantavirus N Protein Intracellular Dynamics and Localization

    Get PDF
    Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation, and several other crucial processes during hantavirus infection. In this study, we generated fluorescently tagged N protein constructs derived from Puumalavirus (PUUV), the dominant hantavirus species in Central, Northern, and Eastern Europe. We comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We observed formation of large, fibrillar PUUV N protein aggregates, rapidly coalescing from early punctate and spike-like assemblies. Moreover, we found significant spatial correlation of N with vimentin, actin, and P-bodies but not with microtubules. N constructs also co-localized with Gn and Gc albeit not as strongly as the glycoproteins associated with each other. Finally, we assessed oligomerization of N constructs, observing efficient and concentration-dependent multimerization, with complexes comprising more than 10 individual proteins

    Extracellular Proteome and Citrullinome of the Oral Pathogen Porphyromonas gingivalis

    Get PDF
    Porphyromonas gingivalis is an oral pathogen associated with the inflammatory disease periodontitis. Periodontitis and P. gingivalis have been associated with rheumatoid arthritis. One of the hallmarks of rheumatoid arthritis is the loss of tolerance against citrullinated proteins. Citrullination is a post translational modification of arginine residues, leading to a change in structure and function of the respective protein. This modification, which is catalyzed by peptidylarginine deiminases (PADs), plays a role in several physiological processes in the human body. Interestingly, P. gingivalis secretes a citrullinating enzyme, known as P. gingivalis PAD (PPAD), which targets bacterial and human proteins. Because the extent of P. gingivalis protein citrullination by PPAD was not yet known, the present study was aimed at identifying the extracellular proteome and citrullinome of P. gingivalis. To this end, extracellulai proteins of two reference strains, two PPAD-deficient mutants, and three clinical isolates of P. gingivalis were analyzed by mass spectrometry. The results uncovered substantial heterogeneity in the extracellular proteome and citrullinome of P. gingivalis, especially in relation to the extracellular detection of typical cytoplasmic proteins. In contrast, the major virulence factors of P. gingivalis were identified in all investigated isolates, although their citrullination was shown to vary. This may be related to post-translational processing of the PPAD enzyme. Altogether, our findings focus attention on the possible roles of 6 to 25 potentially citrullinated proteins, especially the gingipain RgpA, in periodontitis and rheumatoid arthritis.</p

    Grey matter abnormalities in methcathinone abusers with a Parkinsonian syndrome

    Get PDF
    Funding Information: The study was supported by Grants GARNR9199 and GARLA0148P of the Estonian Science Foundation, and Grant No. 5.8.2 of the National Research Program of Latvia. Ricarda A L Menke is employed by the University of Oxford and her salary is funded by the Medical Research Council of the UK. Heidi Johansen-Berg is employed by the Universities of Oxford and Oslo, holds grants from the Wellcome Trust, National Institutes of Health Research, Education Endowment Foundation, Stroke Association, and Royalties from Elsevier. Charlotte J Stagg holds a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society. Ain?rs Stepens holds Grant No. 5.8.2 of the National Research Program of Latvia, which supported this study. Pille Taba holds Grant 9199 of the Estonian Science Foundation, which supported this study, is principal investigator of Grant 3.2.1001.11-0017 of the EU European Regional Development Fund, and participates in Grant IUT2-4 of the Estonian Research Council. Publisher Copyright: © 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.Background: A permanent Parkinsonian syndrome occurs in intravenous abusers of the designer psychostimulant methcathinone (ephedrone). It is attributed to deposition of contaminant manganese, as reflected by characteristic globus pallidus hyperintensity on T1-weighted MRI. Methods: We have investigated brain structure and function in methcathinone abusers (n = 12) compared to matched control subjects (n = 12) using T1-weighted structural and resting-state functional MRI. Results: Segmentation analysis revealed significant (p <.05) subcortical grey matter atrophy in methcathinone abusers within putamen and thalamus bilaterally, and the left caudate nucleus. The volume of the caudate nuclei correlated inversely with duration of methcathinone abuse. Voxel-based morphometry showed patients to have significant grey matter loss (p <.05) bilaterally in the putamina and caudate nucleus. Surface-based analysis demonstrated nine clusters of cerebral cortical thinning in methcathinone abusers, with relative sparing of prefrontal, parieto-occipital, and temporal regions. Resting-state functional MRI analysis showed increased functional connectivity within the motor network of patients (p <.05), particularly within the right primary motor cortex. Conclusion: Taken together, these results suggest that the manganese exposure associated with prolonged methcathinone abuse results in widespread structural and functional changes affecting both subcortical and cortical grey matter and their connections. Underlying the distinctive movement disorder caused by methcathinone abuse, there is a more widespread pattern of brain involvement than is evident from the hyperintensity restricted to the basal ganglia as shown by T1-weighted structural MRI.Peer reviewe

    Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: Evidence from endocrine and gene expression studies

    Get PDF
    Context: Polymorphisms in the gene encoding the glucocorticoid receptor (GR) regulating co-chaperone FKBP5 have been shown to alter GR sensitivity and are associated with an increased risk to develop posttraumatic stress disorder (PTSD). Objective: To investigate interactions of the FKBP5 single-nucleotide polymorphism rs9296158 and PTSD symptoms on baseline cortisol level, low-dose dexamethasone suppression, and whole-blood gene expression. Design: Association of FKBP5 genotypes and PTSD symptoms with endocrine measures and genome-wide expression profiles. Setting: Waiting rooms of general medical and gynecological clinics of an urban hospital at Emory University. Participants: The 211 participants were primarily African American (90.05%) and of low socioeconomic status and had high rates of trauma and PTSD. Main Outcome Measures: Baseline and post-dexamethasone suppression cortisol measures and gene expression levels. Results: In our endocrine study, we found that only risk allele A carriers of rs9296158 showed GR supersensitivity with PTSD; in contrast, baseline cortisol levels were decreased in PTSD only in patients with the GG genotype. Expression of 183 transcripts was significantly correlated with PTSD symptoms after multiple testing corrections. When adding FKBP5 genotype and its interaction with PTSD symptoms, expression levels of an additional 32 genes were significantly regulated by the interaction term. Within these 32 genes, previously reported PTSD candidates were identified, including FKBP5 and the IL18 and STAT pathways. Significant overrepresentation of steroid hormone transcription factor binding sites within these 32 transcripts was observed, highlighting the fact that the earlier-described genotype and PTSDdependent differences in GR sensitivity could drive the observed gene expression pattern. Results were validated by reverse transcriptase-polymerase chain reaction and replicated in an independent sample (N=98). Conclusions: These data suggest that the inheritance of GR sensitivity-moderating FKBP5 polymorphisms can determine specific types of hypothalamic-pituitaryadrenal axis dysfunction within PTSD, which are also reflected in gene-expression changes of a subset of GRresponsive genes. Thus, these findings indicate that functional variants in FKBP5 are associated with biologically distinct subtypes of PTSD

    The effects of using the PReDicT Test to guide the antidepressant treatment of depressed patients: study protocol for a randomised controlled trial

    Get PDF
    Background Antidepressant medication is commonly used to treat depression. However, many patients do not respond to the first medication prescribed and improvements in symptoms are generally only detectable by clinicians 4–6 weeks after the medication has been initiated. As a result, there is often a long delay between the decision to initiate an antidepressant medication and the identification of an effective treatment regimen. Previous work has demonstrated that antidepressant medications alter subtle measures of affective cognition in depressed patients, such as the appraisal of facial expression. Furthermore, these cognitive effects of antidepressants are apparent early in the course of treatment and can also predict later clinical response. This trial will assess whether an electronic test of affective cognition and symptoms (the Predicting Response to Depression Treatment Test; PReDicT Test) can be used to guide antidepressant treatment in depressed patients and, therefore, hasten treatment response compared to a control group of patients treated as usual. Methods/design The study is a randomised, two-arm, multi-centre, open-label, clinical investigation of a medical device, the PReDicT Test. It will be conducted in five European countries (UK, France, Spain, Germany and the Netherlands) in depressed patients who are commencing antidepressant medication. Patients will be randomised to treatment guided by the PReDicT Test (PReDicT arm) or to Treatment as Usual (TaU arm). Patients in the TaU arm will be treated as per current standard guidelines in their particular country. Patients in the PReDicT arm will complete the PReDicT Test after 1 (and if necessary, 2) weeks of treatment. If the test indicates non-response to the treatment, physicians will be advised to immediately alter the patient’s antidepressant therapy by dose escalation or switching to another compound. The primary outcome of the study is the proportion of patients showing a clinical response (defined as 50% or greater decrease in baseline scores of depression measured using the Quick Inventory of Depressive Symptoms – Self-Rated questionnaire) at week 8. Health economic and acceptability data will also be collected and analysed. Discussion This trial will test the clinical efficacy, cost-effectiveness and acceptability of using the novel PReDicT Test to guide antidepressant treatment selection in depressed patients

    Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays

    Get PDF
    Bose-Einstein Correlations (BEC) of three identical charged pions were studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations, corrected for the Coulomb effect, were separated from the known two-pion correlations by a new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold was observed having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029 (syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041 (syst.). The Coulomb correction was found to increase the \lambda_3 value by \~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of 0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the three-pion sample purity. A relation between the two-pion and the three-pion source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.

    Structural and Functional Changes of the Human Macula during Acute Exposure to High Altitude

    Get PDF
    Background: This study aimed to quantify structural and functional changes at the macula during acute exposure to high altitude and to assess their structure/function relationship. This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings: Spectral domain optical coherence tomography and microperimetry were used to quantify changes of central retinal structure and function in 14 healthy subjects during acute exposure to high altitude (4559 m). High-resolution volume scans and fundus-controlled microperimetry of the posterior pole were performed in addition to best-corrected visual acuity (BCVA) measurements and assessment of acute mountain sickness. Analysis of measurements at altitude vs. baseline revealed increased total retinal thickness (TRT) in all four outer ETDRS grid subfields during acute altitude exposure (TRTouter = 2.8061.00 mm; mean change695%CI). This change was inverted towards the inner four subfields (TRT inner = 21.8960.97 mm) with significant reduction of TRT in the fovea (TRT foveal = 26.6260.90 mm) at altitude. BCVA revealed no significant difference compared to baseline (0.0660.08 logMAR). Microperimetry showed stable mean sensitivity in all but the foveal subfield (MSfoveal = 21.1260.68 dB). At baseline recordings before and.2 weeks after high altitude exposure, all subjects showed equal levels with no sign of persisting structural or functional sequels. Conclusions/Significance: During acute exposure to high altitude central retinal thickness is subject to minor, ye

    Intensity Modulated Radiotherapy (IMRT) and Fractionated Stereotactic Radiotherapy (FSRT) for children with head-and-neck-rhabdomyosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study evaluates the outcome of 19 children with rhabdomyosarcoma of the head-and-neck region treated with Intensity Modulated Radiotherapy (IMRT) or Fractionated Stereotactic Radiotherapy (FSRT) between August 1995 and November 2005.</p> <p>Methods</p> <p>We treated 19 children with head-and-neck rhabdomyosarcoma with FSRT (n = 14) or IMRT (n = 5) as a part of multimodal therapy. Median age at the time of radiation therapy was 5 years (range 2–15 years). All children received systemic chemotherapy according to the German Soft Tissue Sarcoma Study protocols.</p> <p>Median size of treatment volume for RT was 93,4 ml. We applied a median total dose of 45 Gy (range 32 Gy – 54 Gy) using a median fractionation of 5 × 1,8 Gy/week (range 1,6 Gy – 1,8 Gy).</p> <p>The median time interval between primary diagnosis and radiation therapy was 5 months (range 3–9 months).</p> <p>Results</p> <p>After RT, the 3- and 5-year survival rate was 94%. The 3- and 5-year actuarial local control rate after RT was 89%.</p> <p>The actuarial freedom of distant metastases rate at 3- and 5-years was 89% for all patients.</p> <p>Radiotherapy was well tolerated in all children and could be completed without interruptions > 4 days. No toxicities >CTC grade 2 were observed. The median follow-up time after RT was 17 months.</p> <p>Conclusion</p> <p>IMRT and FSRT lead to excellent outcome in children with head-and-neck RMS with a low incidence of treatment-related side effects.</p
    corecore