65 research outputs found

    Presentation of Recombinant Proteins in Modified Vaccinia Virus Ankara Extracellular Enveloped Virions

    Get PDF
    Modified Vaccinia Virus Ankara is a highly attenuated vaccinia virus strain developed during the smallpox eradication campaign. Nowadays recombinant attenuated poxviruses gain importance as live carrier vaccines against different infectious diseases and in cancer therapy. The aim of this work was to develop recombinant viral vectors, for presentation of a foreign antigen on the surface of extracellular enveloped particles (EEV). First, it was tested whether significant amounts of this viral form are produced by MVA in comparison to replication competent and widely used vaccinia virus strains. Using a number of independent approaches it could be shown that MVA infection in primary chicken embryo fibroblasts results in the production of enveloped viruses, but strikingly most of these were not released into the culture medium but remained attached to the plasma membrane. The results also showed that the replication competent vaccinia virus IHD-J is more efficient in trans-Golgi-network-wrapping and in releasing enveloped virions into the extracellular medium, while the WR strain is less efficient than MVA. Two different strategies were followed to target the recombinant protein to the surface of extracellular enveloped viruses. Since it was shown that non-vaccinia virus proteins can be incorporated to some extent into the outer membrane, a native model type II membrane protein was used. To increase the chance of foreign protein incorporation a fusion protein was used which consisted of the transmembrane domain of a protein known to be specific for the outer membrane of extracellular eveloped virus and the extracellular domain of the foreign antigen which was used in its native form. The data show that both proteins were incorporated into the extracellular enveloped virions produced in MVA infected chicken embryo fibroblasts, albeit with low efficiency. the ransmembrane domain of the EEV pecific protein was not sufficient to target the foreign protein specifically to the outer envelope.Das Modifizierte Vaccinia Virus Ankara ist ein hoch attenuierter Vaccinia Virus Stamm, der waehrend des Pockenausrottungsprogramms der WHO entwickelt wurde. Heute gewinnen attenuierte Pockenviren zunehmend Bedeutung als Lebendvaccinen gegen verschiedene Infektionskrankheiten und in der Krebstherapie. Das Ziel dieser Arbeit war einen rekombinanten viralen Vektor auf MVA-Basis zu entwickeln, welcher Fremdantigene auf der Oberflaeche der extrazellulaeren, behuellten Viruspartikel (EEV) praesentiert. Zunaechst wurde getestet, ob MVA im Vergleich zu replikationskompetenten und vielbenutzten Vaccinia Viren signifikante Mengen dieser viralen Form produziert. In einer Reihe von unabhaengigen Versuchen konnte gezeigt werden, dass die Infektion von primaeren Huehnerembryofibroblasten mit MVA zur Produktion von behuellten Viren fuehrt. Die meisten dieser behuellten Viren werden jedoch nicht ins Medium abgegeben, sondern bleiben mit der Zelloberflaeche assoziiert. Die Ergebnisse zeigen ebenfalls, dass der replikationskompetente Vaccinia Virus Stamm IHD-J effektiver reife Virionen mit trans-Golgi-Netzwerkmembranen umhuellt und behuellte Viren ins Medium abgibt, waehrend der Stamm WR weniger effizient ist als MVA. Es wurden zwei Strategien verfolgt, um das rekombinante Protein zielgerichtet auf der Oberflaeche von EEVs zu praesentieren. Da bekannt ist, dass Nicht-Vaccinia-Virus Proteine zu einem gewissen Grad in die EEV Membran integriert werden, wurde als Model ein natives Typ II Membranglykoprotein benutzt. Zur Steigerung der Effizienz der Inkorporation des Fremdproteins wurde ein chimaeres Protein verwendet, das aus der Transmembrandomaene eines bekannten EEV spezifischen Proteins und der extrazelulaeren Domaene des Fremdantigens, welches in seiner naiven Form verwendet wurde, benutzt. Die Ergebnisse zeigen, dass beide Proteine in die aeussere Huelle extrazellulaerer, behuellter Virionen aufgenommen wurden, allerdings mit geringer Effizienz. Die Transmembrandomaene des EEV spezifischen Proteins war nicht ausreichend, um das Fremdprotein zielgerichtet in die Membran zu integrieren

    Outcome after Desensitization in HLA or ABO-Incompatible Kidney Transplant Recipients: A Single Center Experience

    Get PDF
    Background The shortage of deceased donors led to an increase of living donor kidney (LDK) transplantations performed in the presence of donor-specific antibodies (DSA) or ABO incompatibility (ABOi) using various desensitization protocols. Methods We herein analyzed 26 ABOi and 8 Luminex positive DSA patients who were successfully desensitized by anti-CD20, antigen-specific immunoadsorption and/or plasmapheresis to receive an LDK transplant. Twenty LDK recipients with non-donor-specific HLA-antibodies (low risk) and 32 without anti-HLA antibodies (no risk) served as control groups. Results 1-year graft survival rate and renal function was similar in all 4 groups (creatinine: 1.63 +/- 0.5 vs 1.78 +/- 0.6 vs 1.64 +/- 0.5 vs 1.6 +/- 0.3 mg/dl in ABOi, DSA, low risk and no risk group). The incidence of acute T-cell mediated rejections did not differ between the 4 groups (15% vs 12, 5% vs 15% vs 22% in ABOi, DSA, low risk and no risk), while antibody-mediated rejections were only found in the DSA (25%) and ABOi (7.5%) groups. Incidence of BK nephropathy (BKVN) was significantly more frequent after desensitization as compared to controls (5/34 vs 0/52, p = 0.03). Conclusion We demonstrate favorable short-term allograft outcome in LDK transplant recipients after desensitization. However, the desensitization was associated with an increased risk of BKVN

    Population pharmacokinetic modeling of multiple-dose intravenous fosfomycin in critically ill patients during continuous venovenous hemodialysis

    Get PDF
    The aim of this study was to investigate the pharmacokinetics of multiple-dose intravenous (i.v.) fosfomycin in critically ill patients during continuous venovenous hemodialysis (CVVHD). Noncompartmental analysis and population pharmacokinetic modeling were used to simulate diferent dosing regimens. We evaluated 15 critically ill patients with renal insufciency and CVVHD undergoing anti-infective treatment with fosfomycin in our ICU. Five grams of fosfomycin were administered for 120 min every 6 h. Plasma concentrations were determined with and without CVVHD. Pharmacokinetic analysis and simulations were performed using non-linear mixed efects modelling (NONMEM). A two-compartment model with renal and dialysis clearance was most accurate in describing the pharmacokinetics of i.v. fosfomycin during CVVHD. Population parameter estimates were 18.20 L and 20.80 L for the central and peripheral compartment volumes, and 0.26 L/h and 5.08 L/h for renal and intercompartmental clearance, respectively. Urinary creatinine clearance (CLCR) represented a considerable component of renal clearance. Central compartment volume increased over time after the frst dose. For patients with CLCR > 50 (90) mL/min and CVVHD, dosage should be increased to≥ 15 (16) grams of i.v. fosfomycin across three (four) daily doses. Individual CLCR must be considered when dosing i.v. fosfomycin in critically ill patients during CVVHD

    The DECRYPT trial: Study protocol for a phase II randomised controlled trial of cognitive therapy for post-traumatic stress disorder (PTSD) in youth exposed to multiple traumatic stressors

    Get PDF
    Background: Post-traumatic stress disorder (PTSD) is a distressing and disabling condition that affects significant numbers of children and adolescents. Youth exposed to multiple traumas (eg, abuse, domestic violence) are at particular risk of developing PTSD. Cognitive therapy for PTSD (CT-PTSD), derived from adult work, is a theoretically informed, disorder-specific form of trauma-focused cognitive–behavioural therapy. While efficacious for child and adolescent single-event trauma samples, its effectiveness in routine settings with more complex, multiple trauma-exposed youth has not been established. The Delivery of Cognitive Therapy for Young People after Trauma randomised controlled trial (RCT) examines the effectiveness of CT-PTSD for treating PTSD following multiple trauma exposure in children and young people in comparison with treatment as usual (TAU). Methods/design: This protocol describes a two-arm, patient-level, single blind, superiority RCT comparing CT-PTSD (n=60) with TAU (n=60) in children and young people aged 8–17 years with a diagnosis of PTSD following multiple trauma exposure. The primary outcome is PTSD severity assessed using the Children’s Revised Impact of Event Scale (8-item version) at post-treatment (ie, approximately 5 months post-randomisation). Secondary outcomes include structured interview assessment for PTSD, complex PTSD symptoms, depression and anxiety, overall functioning and parent-rated mental health. Mid-treatment and 11-month and 29-month post-randomisation assessments will also be completed. Process–outcome evaluation will consider which mechanisms underpin or moderate recovery. Qualitative interviews with the young people, their families and their therapists will be undertaken. Cost-effectiveness of CT-PTSD relative to TAU will be also be assessed. Ethics and dissemination: This trial protocol has been approved by a UK Health Research Authority Research Ethics Committee (East of England–Cambridge South, 16/EE/0233). Findings will be disseminated broadly via peer-reviewed empirical journal articles, conference presentations and clinical workshops. Trial registration: ISRCTN12077707. Registered 24 October 2016 (http://www.isrctn.com/ISRCTN12077707). Trial recruitment commenced on 1 February 2017. It is anticipated that recruitment will continue until June 2021, with 11-month assessments being concluded in May 2022

    Viral Protein Fragmentation May Broaden T-Cell Responses to HIV Vaccines

    Get PDF
    High mutation rates of human immunodeficiency virus (HIV) allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-γ-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise responses

    Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma

    Get PDF
    A proportion of severe asthma patients suffers from persistent airflow limitation (PAL), often associated with more symptoms and exacerbations. Little is known about the underlying mechanisms. Here, our aim was to discover unexplored potential mechanisms using Gene Set Variation Analysis (GSVA), a sensitive technique that can detect underlying pathways in heterogeneous samples. Severe asthma patients from the U-BIOPRED cohort with PAL (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity ratio below the lower limit of normal) were compared with those without PAL. Gene expression was assessed on the total RNA of sputum cells, nasal brushings, and endobronchial brushings and biopsies. GSVA was applied to identify differentially enriched predefined gene signatures based on all available gene expression publications and data on airways disease. Differentially enriched gene signatures were identified in nasal brushings (n=1), sputum (n=9), bronchial brushings (n=1) and bronchial biopsies (n=4) that were associated with response to inhaled steroids, eosinophils, interleukin-13, interferon-α, specific CD4+ T-cells and airway remodelling. PAL in severe asthma has distinguishable underlying gene networks that are associated with treatment, inflammatory pathways and airway remodelling. These findings point towards targets for the therapy of PAL in severe asthma

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    12 pags., 4 figs., 3 tabs.SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.Work at BMRZ is supported by the state of Hesse. Work in Covid19-NMR was supported by the Goethe Corona Funds, by the IWBEFRE-program 20007375 of state of Hesse, the DFG through CRC902: “Molecular Principles of RNA-based regulation.” and through infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611) and by European Union’s Horizon 2020 research and innovation program iNEXT-discovery under grant agreement No 871037. BY-COVID receives funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement number 101046203. “INSPIRED” (MIS 5002550) project, implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011-285950—“SEE-DRUG” project (purchase of UPAT’s 700 MHz NMR equipment). The support of the CERM/CIRMMP center of Instruct-ERIC is gratefully acknowledged. This work has been funded in part by a grant of the Italian Ministry of University and Research (FISR2020IP_02112, ID-COVID) and by Fondazione CR Firenze. A.S. is supported by the Deutsche Forschungsgemeinschaft [SFB902/B16, SCHL2062/2-1] and the Johanna Quandt Young Academy at Goethe [2019/AS01]. M.H. and C.F. thank SFB902 and the Stiftung Polytechnische Gesellschaft for the Scholarship. L.L. work was supported by the French National Research Agency (ANR, NMR-SCoV2-ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), FINOVI and the IR-RMN-THC Fr3050 CNRS. Work at UConn Health was supported by grants from the US National Institutes of Health (R01 GM135592 to B.H., P41 GM111135 and R01 GM123249 to J.C.H.) and the US National Science Foundation (DBI 2030601 to J.C.H.). Latvian Council of Science Grant No. VPP-COVID-2020/1-0014. National Science Foundation EAGER MCB-2031269. This work was supported by the grant Krebsliga KFS-4903-08-2019 and SNF-311030_192646 to J.O. P.G. (ITMP) The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020—Grant Agreement Number 101017536. Open Access funding enabled and organized by Projekt DEALPeer reviewe

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form

    Plasma Membrane Budding as an Alternative Release Mechanism of the Extracellular Enveloped Form of Vaccinia Virus from HeLa Cells

    No full text
    In HeLa cells the assembly of modified vaccinia virus Ankara (MVA), an attenuated vaccinia virus (VV) strain, is blocked. No intracellular mature viruses (IMVs) are made and instead, immature viruses accumulate, some of which undergo condensation and are released from the cell. The condensed particles may undergo wrapping by membranes of the trans-Golgi network and fusion with the plasma membrane prior to their release (M. W. Carroll and B. Moss, Virology 238:198-211, 1997). The present study shows by electron microscopy (EM), however, that the dense particles made in HeLa cells are also released by a budding process at the plasma membrane. By labeling the plasma membrane with antibodies to B5R, a membrane protein of the extracellular enveloped virus, we show that budding occurs at sites that concentrate this protein. EM quantitation revealed that the cell surface around a budding profile was as strongly labeled with anti-B5R antibody as were the extracellular particles, whereas the remainder of the plasma membrane was significantly less labeled. To test whether budding was a characteristic of MVA infection, HeLa cells were infected with the replication competent VV strains Western Reserve strain (WR) and International Health Department strain-J (IHD-J) and also prepared for EM. EM analyses, surprisingly, revealed for both virus strains IMVs that evidently budded at the cell surface at sites that were significantly labeled with anti-B5R. EM also indicated that budding of MVA dense particles was more efficient than budding of IMVs from WR- or IHD-J-infected cells. This was confirmed by semipurifying [(35)S]methionine-labeled dense particles or extracellular enveloped virus (EEVs) from the culture supernatant of MVA- or IHD-J-infected HeLa cells, respectively, showing that threefold more labeled dense particles were secreted than EEVs. Finally, although the released MVA dense particles contain some DNA, they are not infectious, as assessed by plaque assays

    Comparison of virus production in chicken embryo fibroblasts infected with the WR, IHD-J and MVA strains of vaccinia virus: IHD-J is most efficient in trans-Golgi network wrapping and extracellular enveloped virus release

    No full text
    Modified vaccinia virus Ankara (MVA) is an attenuated strain derived from vaccinia virus (VV) Ankara that grows efficiently in primary chicken embryo fibroblasts (CEFs) and baby hamster kidney cells only. MVA produces significantly more of the enveloped forms of VV in infected CEFs compared with VV strain Copenhagen. In the present study, production of the different infectious forms of VV was compared in CEFs infected with MVA or with two well-characterized replication-competent VV strains, WR and IHD-J. In a time-course experiment, the infectivity associated with the extracellular enveloped virus (EEV), the cell-associated enveloped virus (CEV) and intracellular mature and enveloped viruses was determined. Further, the production of the different viral forms was quantified by electron microscopy (EM). The data collectively indicate that IHD-J is most efficient in producing all of the trans-Golgi network-wrapped forms and releases the highest titres of EEVs into the extracellular medium, with WR being least efficient. MVA initially replicated with faster kinetics, resulting in more intracellular virus and CEVs between 8 and 24 h post-infection (p.i.). As assessed by EM, the faster growth kinetics of MVA resulted in 3·5-fold more CEVs at the cell surface at 24 h p.i., compared with both WR and IHD-J. Accordingly, we found that despite the presence of two in-frame deletions in the A36R gene of MVA, this virus was able to make actin tails in CEFs
    corecore