383 research outputs found
Active Video/Arcade Games (Exergaming) and Energy Expenditure in College Students.
Video games have become increasingly popular among young adults. The purpose of this pilot study was to determine if interactive video/arcade games, requiring physical activity to play, increase the energy expenditure (EE) and heart rate (HR) of young adults enough to elicit a training response. Thirteen male and female participants 26.6 ± 5.7 years of age were in the study. Participants were familiarized with equipment and allowed to practice with three games: (1) moving and striking lighted pads, (2) riding a bike to increase the pace of a race car, and (3) boxing against a video simulated opponent. A portable metabolic cart and HR monitor were attached to participants to measure baseline and exercise values. Participants could play any of the three games for 30 minutes while metabolic and HR data were collected. Exercise data were compared to baseline measures, and the 3 games were compared for EE. Paired sample t-tests showed baseline and exercise values differed for HR (t(12) = -18.91, p \u3c 0.01), and EE (t(12) = -15.62, p \u3c 0.01). The boxing game provided the highest VO2 (17.47 ± 4.79 ml·kg·-1min-1). Participants achieved 60% or better of their HR reserve (162.82 ± 10.78 beats·min-1), well within the ACSM guidelines for a training HR. Caloric expenditure during the 30-minute exercise session (226. 07 ± 48.68) is also within the ACSM recommendations for daily physical activity. Thus, interactive video/arcade games that require physical activity to play can be utilized as part of an overall aerobic exercise program
1972 Ruby Yearbook
A digitized copy of the 1972 Ruby, the Ursinus College yearbook.https://digitalcommons.ursinus.edu/ruby/1075/thumbnail.jp
Sleep Timing and Duration in Indigenous Villages with and Without Electric Lighting on Tanna Island, Vanuatu
It has been hypothesized that sleep in the industrialized world is in chronic deficit, due in part to evening light exposure, which delays sleep onset and truncates sleep depending on morning work or school schedules. If so, societies without electricity may sleep longer. However, recent studies of hunter-gatherers and pastoralists living traditional lifestyles without electricity report short sleep compared to industrialized population norms. To further explore the impact of lifestyles and electrification on sleep, we measured sleep by actigraphy in indigenous Melanesians on Tanna Island, Vanuatu, who live traditional subsistence horticultural lifestyles, in villages either with or without access to electricity. Sleep duration was long and efficiency low in both groups, compared to averages from actigraphy studies of industrialized populations. In villages with electricity, light exposure after sunset was increased, sleep onset was delayed, and nocturnal sleep duration was reduced. These effects were driven primarily by breastfeeding mothers living with electric lighting. Relatively long sleep on Tanna may reflect advantages of an environment in which food access is reliable, climate benign, and predators and significant social conflict absent. Despite exposure to outdoor light throughout the day, an effect of artificial evening light was nonetheless detectable on sleep timing and duration
Recommended from our members
Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway.
A promising new compound class for treating human malaria is the imidazolopiperazines (IZP) class. IZP compounds KAF156 (Ganaplacide) and GNF179 are effective against Plasmodium symptomatic asexual blood-stage infections, and are able to prevent transmission and block infection in animal models. But despite the identification of resistance mechanisms in P. falciparum, the mode of action of IZPs remains unknown. To investigate, we here combine in vitro evolution and genome analysis in Saccharomyces cerevisiae with molecular, metabolomic, and chemogenomic methods in P. falciparum. Our findings reveal that IZP-resistant S. cerevisiae clones carry mutations in genes involved in Endoplasmic Reticulum (ER)-based lipid homeostasis and autophagy. In Plasmodium, IZPs inhibit protein trafficking, block the establishment of new permeation pathways, and cause ER expansion. Our data highlight a mechanism for blocking parasite development that is distinct from those of standard compounds used to treat malaria, and demonstrate the potential of IZPs for studying ER-dependent protein processing
General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star
Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase
Quantification of ovarian lesion and fallopian tube vasculature using optical-resolution photoacoustic microscopy
The heterogeneity in the pathological and clinical manifestations of ovarian cancer is a major hurdle impeding early and accurate diagnosis. A host of imaging modalities, including Doppler ultrasound, MRI, and CT, have been investigated to improve the assessment of ovarian lesions. We hypothesized that pathologic conditions might affect the ovarian vasculature and that these changes might be detectable by optical-resolution photoacoustic microscopy (OR-PAM). In our previous work, we developed a benchtop OR-PAM and demonstrated it on a limited set of ovarian and fallopian tube specimens. In this study, we collected data from over 50 patients, supporting a more robust statistical analysis. We then developed an efficient custom analysis pipeline for characterizing the vascular features of the samples, including the mean vessel diameter, vascular density, global vascular directionality, local vascular definition, and local vascular tortuosity/branchedness. Phantom studies using carbon fibers showed that our algorithm was accurate within an acceptable error range. Between normal ovaries and normal fallopian tubes, we observed significant differences in five of six extracted vascular features. Further, we showed that distinct subsets of vascular features could distinguish normal ovaries from cystic, fibrous, and malignant ovarian lesions. In addition, a statistically significant difference was found in the mean vascular tortuosity/branchedness values of normal and abnormal tubes. The findings support the proposition that OR-PAM can help distinguish the severity of tubal and ovarian pathologies
Maxwell-like Lagrangians for higher spins
We show how implementing invariance under divergence-free gauge
transformations leads to a remarkably simple Lagrangian description of massless
bosons of any spin. Our construction covers both flat and (A)dS backgrounds and
extends to tensors of arbitrary mixed-symmetry type. Irreducible and traceless
fields produce single-particle actions, while whenever trace constraints can be
dispensed with the resulting Lagrangians display the same reducible,
multi-particle spectra as those emerging from the tensionless limit of free
open-string field theory. For all explored options the corresponding kinetic
operators take essentially the same form as in the spin-one, Maxwell case.Comment: 77 pages, revised version. Erroneous interpretation and proof of the
gauge-fixing procedure for mixed-symmetry fields corrected. As a consequence,
the mixed-symmetry, one-particle Lagrangians are to be complemented with
conditions on the divergences of the fields; all other conclusions unchanged.
Additional minor changes including references added. To appear in JHE
An Operational Overview of the EXport Processes In the Ocean From RemoTe Sensing (EXPORTS) Northeast Pacific Field Deployment
The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set
The TNF-Family Receptor DR3 is Essential for Diverse T Cell-Mediated Inflammatory Diseases
SummaryDR3 (TRAMP, LARD, WSL-1, TNFRSF25) is a death-domain-containing tumor necrosis factor (TNF)-family receptor primarily expressed on T cells. TL1A, the TNF-family ligand for DR3, can costimulate T cells, but the physiological function of TL1A-DR3 interactions in immune responses is not known. Using DR3-deficient mice, we identified DR3 as the receptor responsible for TL1A-induced T cell costimulation and dendritic cells as the likely source for TL1A during T cell activation. Despite its role in costimulation, DR3 was not required for in vivo T cell priming, for polarization into T helper 1 (Th1), Th2, or Th17 effector cell subtypes, or for effective control of infection with Toxoplasma gondii. Instead, DR3 expression was required on T cells for immunopathology, local T cell accumulation, and cytokine production in Experimental Autoimmune Encephalomyelitis (EAE) and allergic lung inflammation, disease models that depend on distinct effector T cell subsets. DR3 could be an attractive therapeutic target for T cell-mediated autoimmune and allergic diseases
Ostriches Sleep like Platypuses
Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS) and rapid eye movement (REM) sleep. SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves, known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses and echidnas), the most basal (or ‘ancient’) group of living mammals, show only a single sleep state that combines elements of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus), a member of the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing new sleep functions not found in more basal animals
- …