38 research outputs found

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Ratiometric Zinc Biosensor Based on Bioluminescence Resonance Energy Transfer: Trace Metal Ion Determination with Tunable Response

    No full text
    Determination of metal ions such as zinc in solution remains an important task in analytical and biological chemistry. We describe a novel zinc ion biosensing approach using a carbonic anhydrase–Oplophorus luciferase fusion protein that employs bioluminescence resonance energy transfer (BRET) to transduce the level of free zinc as a ratio of emission intensities in the blue and orange portions of the spectrum. In addition to high sensitivity (below nanomolar levels) and selectivity, this approach allows both quantitative determination of “free” zinc ion (also termed “mobile” or “labile”) using bioluminescence ratios and determination of the presence of the ion above a threshold simply by the change in color of bioluminescence, without an instrument. The carbonic anhydrase metal ion sensing platform offers well-established flexibility in sensitivity, selectivity, and response kinetics. Finally, bioluminescence labeling has proven an effective approach for molecular imaging in vivo since no exciting light is required; the expressible nature of this sensor offers the prospect of imaging zinc fluxes in vivo

    RNA Expression Profiling of Human iPSC-Derived Cardiomyocytes in a Cardiac Hypertrophy Model

    No full text
    <div><p>Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. Here we utilize a previously established <i>in</i><i>vitro</i> model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We perform miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1 stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. A principal component analysis approach comparing the <i>in</i><i>vitro</i> data with human myocardial biopsies detected overlapping expression changes between the <i>in</i><i>vitro</i> samples and myocardial biopsies with Left Ventricular Hypertrophy. These results provide further insights into the complex RNA regulatory mechanism associated with cardiac hypertrophy.</p></div

    Known mature miRNA validation with RT-qPCR.

    No full text
    <p>Comparison of RT-qpCR and miRNA-Seq derived log<sub>2</sub> fold change for a subset of known human mature miRNAs between control-CMs and ET1-CMs. The mean values taken from triplicate experiments are plotted with standard deviation error bars.</p

    PCA plot comparing <i>in</i><i>vitro</i> hiPSC model with <i>in</i><i>vivo</i> human myocardial biopsies.

    No full text
    <p>Plot of first and second principal components (PC1 and PC2) for microarray expression data comparing ET-1 treated hiPSC-CMs with human myocardial biopsy with and without LVH data.</p
    corecore