1,941 research outputs found

    Accurate recovery-based upper error bounds for the extended finite element framework

    Get PDF
    This paper introduces a recovery-type error estimator yielding upper bounds of the error in energy norm for linear elastic fracture mechanics problems solved using the extended finite element method (XFEM). The paper can be considered as an extension and enhancement of a previous work in which the upper bounds of the error were developed in a FEM framework. The upper bound property requires the recovered solution to be equilibrated and continuous. The proposed technique consists of using a recovery technique, especially adapted to the XFEM framework that yields equilibrium at a local level (patch by patch). Then a postprocess based on the partition of unity concept is used to obtain continuity. The result is a very accurate but only nearly-statically admissible recovered stress field, with small equilibrium defaults introduced by the postprocess. Sharp upper bounds are obtained using a new methodology accounting for the equilibrium defaults, as demonstrated by the numerical tests

    E. P. Thompson y una reseña poco corriente: Historia y política en un momento de crisis

    Get PDF
    En 1987, Edward P. Thompson publicó en la London Review of Books una virulenta al libro de John Colin Davis "Fear, Myth and History: The Ranters and the Historians" (Cambridge University Press, 1986). El artículo, que acompaña una traducción al castellano de la reseña de Thompson y de las respuestas que generó, ofrece una contextualización política e historiográfica del debate. Con ese fin, describe las principales discusiones entre los historiadores marxistas y el revisionismo histórico del último cuarto del siglo XX, detalla la producción de John Colin Davis y repone los argumentos centrales de una discusión sobre "Fear, Myth and History" que se extendió en las páginas de la revista Past & Present durante la década de 1990.Fil: Gattinoni, Andrés Juan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín; ArgentinaFil: González, Martín Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina. Instituto Superior del Profesorado Doctor Joaquin Victor Gonzalez.; Argentin

    Applied Trends in Magnetic Rare Earth/Transition Metal Alloys and Multilayers

    Get PDF
    Ferrimagnetic thin films formerly played a very important role in the development of information storage technology. Now they are again at the forefront of the rising field of spintronics. From new, more efficient magnetic recording media and sensors based on spin valves to the promising technologies envisaged by all-optical switching, ferrimagnets offer singular properties that deserve to be studies both from the point of view of fundamental physics and for applications. In this review, we will focus on ferrimagnetic thin films based on the combination of rare earths (RE) and transition metals (TM

    Structural and Magnetic Properties of Ni0.8Fe0.2/Ti Nanoscale Multilayers

    Get PDF
    The influence of the thickness of the Ni0.8Fe0.2 (Permalloy, Py) layers on the structural and magnetic properties of magnetron sputtered Py/Ti multilayers was studied. The thickness of the Py layers was varied in the interval of 8 to 30 angstrom. X-ray reflectivity scans evidence the existence of a well-defined layered structure in all the samples considered, but also the presence of a complex intermixed interface. The shape of both the temperature dependence of magnetization and the hysteresis loops of the multilayered structures depends strongly on Py thickness. Magnetic and reflectivity measurements were comparatively analyzed in order to better understand the structure of the samples, and specifically, their interfaces. In particular, the presence of small superparamagnetic Py at the interfaces of the samples, especially evident in the samples with the thinnest Py layers, seems confirmed by the magnetic measurements, agreeing well with the reflectivity results.The research was supported by the Ministry of Education and Science of the Russian Federation (Agreement No. 02.A03.21.0006) and by the Spanish projects MAT2014-58034-R (MINECO/AEI/FEDER, EU) and PEII-2014-042-P (JCCM/FEDER, EU)

    Mechanical behaviour of grapevine wood affected by Xylotrechus arvicola

    Get PDF
    [EN] The cerambycid insect Xylotrechus arvicola is considered a pest that affects the wood of the grapevine (Vitis vinifera) in the major wine areas of the Iberian Peninsula. The larva of this insect perforates the grapevine wood, resulting in structural and biomechanical failure of the vine plants. Vine samples from wood damaged by X. arvicola larvae were picked up from different vineyards and grape varieties. Compressive and flexural tests were performed in order to assess the mechanical behaviour of the wood samples. Total length of the cracks in wood samples (TLCWS) that appeared on the surface of the grapevine wood samples after the mechanical tests was measured. Compressive strength (CS) and flexural strength (FS) decreased with the increase of the cross-sectional area (CSA) of both branches and trunks, regardless of damage condition or water content. Moreover, the resistance was lower in damaged wood. In addition, this was verified through the linear regression coefficients of the interaction CS x CSA and FS x CSA. TLCWS in branches and trunks of damaged samples was greater that in undamaged samples. Also, TLCWS within the same damage condition and part of the plant was higher in dry samples than in fresh samples. The damaged wood would show a higher vulnerability to common mechanical stress suffered by the grapevines in the field including heavy winds, fruit overweight or harvesting machines shaking (when mechanically collected). Larvae of this insect altered the mechanical behaviour of the trunk and branches of grapevine wood. The mechanical strength of wood was more negatively affected when the CSA of the branches and trunks increased. Longer TLCWS was found in affected wood

    Failure under stress of grapevine wood: The effects of the cerambycid xylotrechus arvicola on the biomechanics properties of vitis vinifera

    Get PDF
    Xylotrechus arvicola is an insect pest on Vitis vinifera in the main wine-producing regions of Spain. X. arvicola larvae bore inside grapevine wood, which cause structural damages in the plants´ biomechanical properties. Grapevine wood affected and unaffected by larvae, were collected from vineyards. Compression and flexural tests were used to quantify biomechanical wood properties. Affected wood broke more quickly and endured a lower supported force than unaffected wood in both varieties and moisture states. Tempranillo was the most resistant variety on trunks, while Cabernet-Sauvignon was the most resistant variety on branches, where all infested varieties showed a lower rate of bending. Grapevine wood affected by X. arvicola larvae shows an important decrease in its resistance in both moisture states - dry and wet wood - and it is observed due to the faster break in time and a lower supported force. These damages give the affected wood greater sensitivity to external mechanical factors in the vineyards, such as strong winds, harvest weight and the vibration exerted by harvesting machines. The aspect of stress-time curves in all cases follow similar patterns, so in future studies might be possible to stablish relationships between both wet and dry samples and different infestation levels

    Magneto-Transport Properties of Co–Cu Thin Films Obtained by Co-Sputtering and Sputter Gas Aggregation

    Get PDF
    Cu100−xCox thin films have been obtained by sputtering (x = 3, 9) and sputter gas aggregation (x = 2.5, 7.5) and subsequent annealing at 400 °C for 1 h. We have studied their structural, magnetic, and magnetotransport properties, both for the as-deposited and annealed samples, confirming the important role of the fabrication method in the properties. The magnetic measurements and the fitting of the hysteresis loops evidence that as-deposited samples consist of superparamagnetic (SPM) and/or ferromagnetic clusters, but in the samples obtained by gas aggregation the clusters are greater (with ferromagnetic behavior at room temperature) whereas in the samples obtained by sputtering, the clusters are smaller and there are also diluted Co atoms in the Cu matrix. The annealing affects negligibly the samples obtained by gas aggregation, but the ones obtained by sputtering are more affected, appearing greater clusters. This behavior is also reflected in the magnetoresistance (MR) measurements of the samples, with different shapes of the MR curves depending on the preparation method: more lineal in the whole range for sputtering, saturation at low fields (about 10 kOe) for gas aggregation. Finally, a Kondo-like minimum in the resistance versus temperature is found in the samples obtained by sputtering, affected by the magnetic field and the annealing. The observed Kondo-like behavior and the influence of annealing on a Kondo-like minimum in sputtered thin films have been attributed to the presence of diluted Co atoms in the Cu matrix and the Co precipitations from the Co–Cu solid solution upon annealing respectively.The authors gratefully acknowledge the financial support from the Plan Propio de la Universidad de Castilla-La Mancha (FEDER, EU) for the “Grupo de Materiales Magnéticos (GMM)”, by Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE), by the Government of the Basque Country under PIBA 2018-44 and by the University of Basque Country under the scheme of “Ayuda a Grupos Consolidados” (Ref.: GIU18/192)

    Failure under stress of grapevine wood: The effects of the cerambycid Xylotrechus arvicola on the biomechanics properties of Vitis vinifera

    Get PDF
    [EN] Xylotrechus arvicola is an insect pest on Vitis vinifera in the main wine-producing regions of Spain. X. arvicola larvae bore inside grapevine wood, which cause structural damages in the plants´ biomechanical properties. Grapevine wood affected and unaffected by larvae, were collected from vineyards. Compression and flexural tests were used to quantify biomechanical wood properties. Affected wood broke more quickly and endured a lower supported force than unaffected wood in both varieties and moisture states. Tempranillo was the most resistant variety on trunks, while Cabernet-Sauvignon was the most resistant variety on branches, where all infested varieties showed a lower rate of bending. Grapevine wood affected by X. arvicola larvae shows an important decrease in its resistance in both moisture states - dry and wet wood - and it is observed due to the faster break in time and a lower supported force. These damages give the affected wood greater sensitivity to external mechanical factors in the vineyards, such as strong winds, harvest weight and the vibration exerted by harvesting machines. The aspect of stress-time curves in all cases follow similar patterns, so in future studies might be possible to stablish relationships between both wet and dry samples and different infestation levels

    A SpiNNaker Application: Design, Implementation and Validation of SCPGs

    Get PDF
    In this paper, we present the numerical results of the implementation of a Spiking Central Pattern Generator (SCPG) on a SpiNNaker board. The SCPG is a network of current-based leaky integrateand- fire (LIF) neurons, which generates periodic spike trains that correspond to different locomotion gaits (i.e. walk, trot, run). To generate such patterns, the SCPG has been configured with different topologies, and its parameters have been experimentally estimated. To validate our designs, we have implemented them on the SpiNNaker board using PyNN and we have embedded it on a hexapod robot. The system includes a Dynamic Vision Sensor system able to command a pattern to the robot depending on the frequency of the events fired. The more activity the DVS produces, the faster that the pattern that is commanded will be.Ministerio de Economía y Competitividad TEC2016-77785-

    Forecasting of poor visibility episodes in the vicinity of Tenerife Norte Airport

    Get PDF
    Aviation safety is a priority that may be compromised by adverse weather conditions. This is the case for poor visibility in the vicinity of airports, which can pose a risk during takeoff and landing. For airports that are prone to fog because of their location, an accurate forecast of poor-visibility episodes is vital. However, the forecasting of low clouds is still a challenge in numerical weather prediction, especially when an airport is near complex terrain for which the use of non-hydrostatic mesoscale models is mandatory. All these factors are present at Tenerife Norte Airport, which is commonly affected by poor visibility from low clouds related to persistent trade winds and moist flows from the Atlantic Ocean. In this paper, several methods for estimating visibility based on mesoscale model outputs are tested. Use of the HARMONIE-AROME model is encouraged because of its excellent performance in the detection of poor-visibility episodes (False Alarm Ratio = 0.34–0.38; Frequency Of Misses = 0.22–0.38, depending on the model version and method used). In addition, the use of satellite application facilities is proposed for the nowcasting of low clouds affecting the airport area. Specifically, we used products that estimate cloud type, cloud top altitude, and integrated water vapor content in the boundary layer. Finally, an application is presented for the monitoring of weather conditions in real time to estimate poor-visibility risk.This work was supported by the Aeronautics Annual Plan 2018 of AEMET
    corecore