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ARTICLE INFO ABSTRACT

Aviation safety is a priority that may be compromised by adverse weather conditions. This is the case for poor
visibility in the vicinity of airports, which can pose a risk during takeoff and landing. For airports that are prone
Fog to fog because of their location, an accurate forecast of poor-visibility episodes is vital. However, the forecasting
Poor visibility . of low clouds is still a challenge in numerical weather prediction, especially when an airport is near complex ter-
x;sé’scale modelling rain for which the use of non-hydrostatic mesoscale models is mandatory. All these factors are present at Tenerife

Norte Airport, which is commonly affected by poor visibility from low clouds related to persistent trade winds
and moist flows from the Atlantic Ocean.

In this paper, several methods for estimating visibility based on mesoscale model outputs are tested. Use of
the HARMONIE-AROME model is encouraged because of its excellent performance in the detection of poor-visi-
bility episodes (False Alarm Ratio = 0.34-0.38; Frequency Of Misses = 0.22-0.38, depending on the model ver-
sion and method used). In addition, the use of satellite application facilities is proposed for the nowcasting of
low clouds affecting the airport area. Specifically, we used products that estimate cloud type, cloud top altitude,
and integrated water vapor content in the boundary layer. Finally, an application is presented for the monitoring
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of weather conditions in real time to estimate poor-visibility risk.

1. Introduction

Air traffic management can be affected by adverse weather condi-
tions such as icing, wind shear, poor visibility and turbulence (Dey,
2018). Particularly, poor visibility around airports affects flight opera-
tions by reducing runway and taxiway capacities, which causes flight
delays, diversions to other airports, or even cancellations (Bergot et
al., 2007). The impact of poor-visibility events has increased in recent
decades because of an increase in air traffic (Gultepe et al., 2007).

Poor-visibility events are defined as fog when surface horizontal vis-
ibility is <1000m, and as mist when that visibility is between 1000
and 5000m (WMO, 2011). These episodes are caused by the suspen-
sion of cloud droplets (of radii 1-40pm) near the surface. According
to Pagowski et al. (2004), the most common fog types are radiation
(caused by thermal radiation cooling during clear sky nights), advec-
tion (which can occur during warm air advection over a colder sur-
face), and orographic (when air cools adiabatically when lifted by oro-

graphic forcing over a mountain slope). Poor visibility can also be re-
lated to precipitation (Fedorova et al., 2013).

When visibility falls below a certain threshold, poor-visibility proce-
dures must be activated by airport managers to ensure aviation safety.
During fog events, air traffic controllers may reduce taxiway occupa-
tion, prolong periods between takeoffs and landings, or even suspend
airport operations to avoid runway incursions and other possible in-
cidents or accidents (Guijo-Rubio et al., 2018). Also, missed approach
rates are higher, which adds workload and stress to the personnel in-
volved. Therefore, an accurate forecast of poor-visibility episodes affect-
ing airports is vital because of their impacts on flight planning and avi-
ation safety (da Rocha et al., 2015). In this regard, it is crucial to have
visibility forecasts as accurate as possible 24 h in advance in order to is-
sue a Terminal Aerodrome Forecast (TAF).

However, the estimation of visibility remains a challenge for nu-
merical weather prediction models. This challenge is greater for air-
ports in complex terrain areas, where the use of mesoscale models with
high resolution is indispensable. Fog formation and dissipation depends
mainly on microphysical processes, wind, humidity and temperature in
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the planetary boundary layer (PBL) (Stolaki et al., 2012; Payra and
Mohan, 2014). Some of these variables must be parameterized, so the
main sources of error in numerical models are initial conditions and
physical parameterizations (Fernandez-Gonzalez et al., 2017). The most
common method to evaluate uncertainty associated with a forecast is
the perturbation of initial conditions. However, perturbations require
time to grow, so they are used mainly for medium-range forecasts
(Buizza et al., 1999). For short-term forecasts, it is advisable to use dif-
ferent models or parameterizations to evaluate prediction uncertainty,
because this facilitates adequate spread in a short lead time (Stensrud et
al., 2000).

Forecasts from mesoscale models can be complemented by the use
of satellite products for the nowcasting of fog episodes (Ahmed et al.,
2015). Fog detection with satellite imagery has been attempted in recent
decades using various approaches (Nilo et al., 2018). For instance, fog
and low clouds can be detected by their reflectance characteristics in the
visible band. During nighttime, the difference between brightness tem-
peratures in the 10.8 and 3.7 pm channels allows the detection of low
clouds, because fog droplets produce less emissivity in the 3.7 um chan-
nel than at 10.8 um (Gultepe et al., 2007). During daytime, information
provided by infrared channels can be compared with visible channels
for the detection of fog (Cermak and Bendix, 2008).

The aim of the present research was to provide a categorical fore-
cast of the risk of poor-visibility conditions near Tenerife Norte Airport
(hereafter, GCXO, the airport's International Civil Aviation Organization
code). This was done using mesoscale models with a lead time of 24h
to improve TAF reliability. In addition, several products of the Now-
casting Satellite Application Facilities (NWC SAF, nwc-saf.eumetsat.int)
are proposed to confirm/correct the mesoscale forecasts in real time,
improving on information within Meteorological Terminal Air Reports
(METAR), special reports (SPECI), and trend reports (TREND). GCXO
was selected because of recurring fog; it is the most affected by this phe-
nomenon among all the airports in the Canary Islands, with consequent
great impact on flight operations. With over 4.7 million passengers in
2017, GCXO funnels most of the Spanish national air traffic to the island
of Tenerife. The airport is also known for one of the worst accidents in
aviation history. On 27 March 1977, two Boeing 747 jets collided on the
runway, causing 583 fatalities. One of the key factors in this accident
was poor visibility caused by dense fog. This event stresses the impor-
tance of investigating this type of weather phenomenon at GCXO, espe-
cially for its impacts on aviation safety.

2. Study area

GCXO is in the northeast of Tenerife, part of the Canary Islands
(Fig. 1). The airport runway is oriented NW-SE at an elevation about
600 m above sea level (masl). It is between two mountain ranges whose
elevations are higher than 1000 masl. Depending on wind direc-
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tion, flights use Runway 12 (R12, northwestern part of the airport) or
Runway 30 (R30, in its southeast). One of the key features of this oro-
graphic setting is efficient channeling of flow from either the NW or SE,
with a clear dominance of the first because of prevailing trade winds
(northeasterly) in the area, which occur >70% of the year.

The state meteorological agency (AEMET) of Spain has the capabil-
ity to provide aeronautical meteorological services within the national
airspace. Therefore, the staff of AEMET issue TAFs, which are forecasts
of conditions at airports over the next 24h. Moreover, routine METARs
are produced every half hour using observations at the airport. SPECI
reports can be issued when observed meteorological conditions change
suddenly. In addition, TREND reports must be issued when significant
changes are expected in the next two hours. The purpose of our research
was to help AEMET staff revise these reports, improving their reliability
by making available more detailed information from mesoscale models
and satellite products.

3. Experimental design
3.1. Database

We selected 14 poor-visibility episodes (Table 1) registered at GCXO
during 2017 for validation. At least one episode per month was chosen
to have events representative of all seasons of the year. In order to cover
all the different types of poor visibility episodes that affect the GCXO
airport, 4 episodes of SE wind and 10 of NW wind were selected, of
which 2 the visibility was reduced by the passage of a cold front. Ac-
cording to several works, this sample number is sufficient for validating
mesoscale models (Evans et al., 2012; Johnson and Wang, 2012).

In the validation, we used several instruments near R30, which is
the representative runway of the airport. The instrumentation is com-
posed of the following: an anemometer with Vaisala WAA15 wind speed
(WSP) sensor and Vaisala WAV15 direction sensor; a Vaisala FD12 front
dispersion sensor for measuring visibility and runway visual range; a
Vaisala HMP155 thermo-hygrograph measuring temperature (T), dew
point (Td), and relative humidity (RH).

3.2. Mesoscale models

We tested various mesoscale models. First, version 3.7.1. of the
Weather Research and Forecasting (WRF) model was used to simulate
the 14 episodes. WRF is a three-dimensional, nonhydrostatic model de-
scribed by Skamarock and Klemp (2008). This model has been used in
the forecasting of visibility near airports (Bang et al., 2008). Its simula-
tions were initialized using initial conditions provided by the NCEP-GFS
analysis with 1° x 1° global grid and temporal resolution of 6h (Saha,
2010). Simulations of each of the 14days were run individually, ini-
tialized at 00:00 UTC with a hindcast period of 24h. Four nested do-

Fig. 1. Orography of Canary Islands (a). Location of GCXO on Tenerife (b).
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Table 1
Dates of the fourteen low visibility episodes in GCXO selected for the validation.

2017 01 2017 02 2017 03 2017 04 2017 04 2017 05 2017 06
21 19 24 02 26 31 15

2017 07 2017 07 2017 08 2017 09 2017 10 2017 11 2017 12
05 14 31 07 17 24 02

mains were defined following a two-way nesting strategy. Spatial reso-
lutions were 27 km for the outer domain (D01), 9 and 3 km respectively
for D02 and D03, and 1km for the inner domain (D04), centered over
GCXO. Each domain had 100 x 100 grid points in the N-S and E-W di-
rections. We defined 60 sigma levels for the atmosphere, with increasing
resolution approaching the surface (8 vertical levels for the first 120m
above ground level (m AGL) and 20 for the first 1000 m AGL). For phys-
ical parameterizations, the Thompson six-class microphysics (Thompson
et al., 2008), New Goddard long and short wave radiation (Chou et
al., 2001), and Mellor-Yamada-Janjic PBL (Janjic, 1990) schemes were
used.

Furthermore, two versions of the HARMONIE-AROME model were
tested, namely, HARMONIE-AROME 38h1.2 (H38), which was the op-
erational mesoscale model of AEMET until June 2017, and HAR-
MONIE-AROME 40h1.1 (H40), which is the agency's current opera-
tional mesoscale model. These models have a nonhydrostatic formula-
tion and spectral representation (Seity et al., 2011). A detailed descrip-
tion of the configuration of these models is in Bengtsson et al. (2017).
The operational forecasts of each poor-visibility episode, initialized at
00:00 UTC, were used in the validation procedure. These simulations
had a lead time of 48h but only the first 24h were used. The models
had a 2.5-km horizontal grid resolution for the area around the Canary
Islands, with 65 vertical levels and a model top of 10hPa. The domain
defined for models H38 and H40 are seen in Fig. 1a.

In the case of H38, descriptions of the assimilation component are in
Fischer et al. (2005) and Brousseau et al. (2011). The assimilated obser-
vations are equivalent to those used by the European Centre for Medium
Range Weather Forecasts ERA-Interim reanalysis (Dee et al., 2011). The
surface parameterization scheme was version 7.2 of SURFEX (Masson et
al., 2013).

Several changes were made to H40. The SURFEX surface scheme
was updated to version 7.3 (Masson, 2016). The assimilation of H40 in-
cluded Global Navigation Satellite System data for improving humidity
observations (Sanchez Arriola et al., 2016). Following the recommen-
dations of Nielsen et al. (2014), the cloud-inhomogeneity factor was
changed from 0.7 to 1.0, meaning that the cloud optical thickness was
no longer reduced by 30% before cloud transmittance was computed
(Nielsen and Gleeson, 2018). In addition, the Cuxart, Bougeault and Re-
delsperger turbulence scheme (Cuxart et al., 2000) was replaced by the
turbulence scheme from the RACMO model (Lenderink and Holtslag,
2004).

3.3. Validation methodology

The validation period spanned 06:00 to 24:00 UTC on each of the
14 days of the study period. The first 6h of each day were not consid-
ered in order to avoid errors from the spin-up period of the WRF model,
because it was executed from a cold start. The first 6h of H38 and H40
were also discarded to validate identical periods, although the warm
start from a previous run cycle of HARMONIE-AROME allowed model
outputs to be valid from the simulation start. As a result, the database
used in the multi-category validation consists of a sample of 252h. Con-
sidering the high horizontal resolution of the mesoscale models and in
order to avoid interpolation errors, the validation was performed using
data of the grid point nearest the locations of the observations. A prelim-
inary validation was carried out to confirm that the nearest grid point
was the most representative of the weather at GCXO.

Atmospheric Research xxx (xxxx) Xxx-Xxx

Model performance was first evaluated for the forecasting of mete-
orological variables most associated with fog formation. A validation
based on continuous statistics was developed for T, Td, T—Td, RH, WSP
and wind direction. Validation indexes selected for this task were the
Bias, Mean Absolute Error (MAE), and correlation coefficient (r), calcu-
lated as follows.

n

Bias =Y (M; - 0;)

i=1

n
MAE = ’1-12 |M; -0,
i=1

1 (4-7)(0.-9)

Ve ()0 -0)

M; are modelled values, O; observed values, and n is the number of
hours in the study period. Bias compares modelled and observed val-
ues with the aim of determining if the model overestimates (Bias >0)
or underestimates (Bias <0) a certain variable. On the other hand, the
MAE evaluates the magnitude of simulation error, regardless of whether
the model overestimates or underestimates. Finally, r allows analysis
of model performance over time, which is very important during fog
episodes affected by the diurnal cycle.

Then, values obtained for the various indexes were normalized in or-
der to compare them. We thereby determined a normalized index (NI).
The ultimate purpose of this normalization was to develop a total index
(TI) that summarized the results of the validation, thereby objectively
determining the best model. The normalization was done by subtracting
the average Bias/MAE/r from the obtained values, and then dividing the
result by the same average. In the case of Bias, it is necessary to work
with absolute values. To obtain a normalized r we must also multiply
by —1 because, opposite to the cases of Bias and MAE, values closer to
0 are poorer. Finally, the TI is computed by adding the values of nor-
malized Bias, MAE and r for each model. Negative TI values mean that
the model has above average performance, i.e., the smaller the TI, the
better the performance.

Subsequently, a multi-category validation for fog/mist/OK visibil-
ity events was carried out using contingency tables. According to defi-
nitions of the World Meteorological Organization (WMO, 2011), three
categories were used for validation: fog (visibility <1000m), mist
(1000 m <visibility <5000m), and OK (visibility >5000 m).

Visibility in GCXO airport can vary sharply in a few minutes, being
one of the most difficult variables to predict by the numerical models.
This is the reason why we used two methods to estimate visibility us-
ing the mesoscale models. The first estimates visibility (VISRH) using T,
Td and RH as predictive variables, by means of an empirical algorithm
defined by Doran et al. (1999). The second method gave an additional
measure of visibility (VISHD) based on the hydrometeor concentration
estimated by the model, following methods in Kunkel (1984), Stoelinga
and Warner (1999), and Petersen and Nielsen (2000).

~ T-T,

—1In(0.02)

VISHD (m)=
(ﬂclean + ﬁclnud + ﬂice + ﬂrain + ﬂsrmw + ﬁgraupel + ﬂaera,ml.v)

where B is the volume extinction coefficient of clean air (constant),
cloud droplets, ice, rain, snow, graupel (depends on the concentration
of each hydrometeor) and aerosols (based on the concentration of cloud
condensation nuclei and RH at 2m).
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Finally, an additional method for evaluating poor-visibility risk is
proposed, which is based on an algorithm that determines if certain
thresholds are exceeded. Given the particular characteristics of fog
events at GCXO, variables to develop the algorithm were selected ad
hoc for that specific location. These were T-Td, RH, and WSP. Three al-
gorithms were tested, using thresholds in Table 2. These thresholds are
linked to Algorithm 1 (A1), Algorithm 2 (A2), and Algorithm 3 (A3).

Then, the contingency table defined in Table 3 was used to contrast
the frequencies of forecast fog, mist and OK visibility episodes against
observed ones (capital letters signify the sum of the corresponding row/
column).

Based on the methodology of Baldwin and Kain (2006) and Lépez
et al. (2007), the following skill scores were used. First, the Frequency
Bias Index (FBI) was calculated. The FBI estimates the ratio of fore-
cast vs. observed poor-visibility episodes. This score indicates whether
the method has a tendency to over-forecast (FBI > 1) or under-forecast
(FBI < 1) poor-visibility events. A value of 1 is the perfect score.

Additionally, the False Alarm Ratio (FAR) was estimated to evaluate
the fraction of fog and mist episodes that were forecast but did not oc-
cur. A value of 0 is the perfect score.

Finally, the Frequency Of Misses (FOM) assesses the fraction of fog
and mist episodes that were not forecast but did occur. A value of 0 is
the perfect score.

_ M+N _ g+h _
FBI = J+K FAR = M+N FOM = J+K

3.4. Satellite products

Based on our research, the use of satellite products is encouraged to
complement the fog forecast provided by mesoscale models. We used
several products from the Meteosat Second Generation, which is a geo-
stationary satellite that provides continuous coverage of the study area.
Specifically, we used the products “Cloud Type,” “Cloud Top Altitude,”
and “Precipitable Water in Boundary Layer” from the NWC SAF. The
Cloud Type product allows discernment of the cloud type and estima-
tion of cloud thickness. By complementing this product with the Cloud
Top Altitude, it is possible to estimate cloud top height. In cloud-free re-
gions, the Precipitable Water in Boundary Layer product is able to esti-
mate precipitable water (in mm) integrated from the surface to 850 hPa
level. This product permits the estimation of moisture content in the
stratum in which the cloudiness producing poor visibility at GCXO de-
velops. A more detailed explanation of the above products is in Ripodas
et al. (2016).

4. Results and discussion
4.1. Conceptual model of fog development at GCXO

GCXO is located on a mountain pass between two mountain ranges,
which favors wind channeling from the NW or SE, depending on the
location of the semi-permanent subtropical high. Thus, the geomorpho-
logical configuration is essential to the occurrence of such ageostrophic
flow, which differs from the prevailing trade winds. The flow is forced
to ascend the slope of a hill, adiabatically cooling so that saturation

Table 2
Thresholds of the selected variables for defining fog/mist/OK conditions.
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can be reached when there is substantial moisture. Sometimes, satura-
tion is reached at an altitude lower than the elevation of GCXO, causing
poor visibility at the airport. The uplift is often sharply interrupted by a
trade wind inversion, limiting the cloud top to the same altitude as the
base of the temperature inversion.

Poor-visibility events are frequent throughout the year but are par-
ticularly influential during summer, especially in June and July. A diur-
nal cycle is commonly observed, with the poor-visibility episodes more
likely from sunset to dawn, when T and Td approach each other. The
presence of the semi-permanent subtropical high generates anticyclonic
subsidence in the Canary Island region, forming a thermal inversion that
produces low stratocumulus. An example of a radiosonde profile over
the island of Tenerife (a few kilometers SW of GCXO) is shown in Fig. 2,
in which a strong trade wind inversion is evident around 1000 masl.

In winter, when the inversion is at an average altitude between 1200
and 2000 masl, the cloud base is usually above the runway and visi-
bility does not tend to be much of a problem. However, during drizzle
or moderate precipitation events, especially those associated with fronts
from mid-latitude systems approaching from the NW, the formation of
fog banks is not uncommon, and even the drizzle itself can reduce visi-
bility. These events are not usually strongly dependent on the daily cy-
cle but rather on the front arrival (AEMET, 2019).

In summer, the thermal inversion is normally at lower altitudes (of-
ten between 500 and 1000 masl), with a strong diurnal variability that
presents the main obstacle to accurately predicting reduced visibility
events. It is also in summer when trade winds from the NE are stronger
and more frequent (~90% of the time), with the aforementioned orog-
raphy consistently channeling the flow to be mostly from the NW (Fig.
3a). This flow initiates moisture convergence in the PBL north of Tener-
ife island (Fig. 4a) and may produce low clouds (Fig. 5a) that are re-
sponsible for poor visibility at GCXO. In this scenario, poor visibility
first reaches at R12 and later at R30.

Another meteorological situation, less frequent, occurs when the
subtropical high becomes very weak or even dissipates. This scenario
often weakens the pressure gradient around the Canary Islands. When
this occurs, it is common to have a weak flow from the ENE-E that is
channeled from SE by the terrain (Fig. 3b). This flow favors low-level
moisture pooling south of Tenerife island (Fig. 4b) and cloud develop-
ment from the southern side of the island to the airport (Fig. 5b). This
causes poor visibility to occur earlier at the R30 threshold than at R12.

The conceptual model described in this paper is similar to the fog
elucidated by Fedorova et al. (2013), which was also related to a ther-
mal inversion above the trade winds. This shows that the products ad-
dressed in the following sections could be adapted to other locations
with the same visibility problems.

4.2. Validation of mesoscale models

Before defining the products developed to forecast poor-visibility
episodes, we validated the variables most associated with fog formation.
In this validation, values of the variables estimated by the mesoscale
models were compared with those observed at GCXO. The sample
used in the validation is composed by observed visibility data

Algorithm 1 Algorithm 2 Algorithm 3

T-Td (°C) RH (%) WSP (kt) T-Td (°C) RH (%) WSP (kt) T-Td (°C) RH (%) WSP (kt)
Fog <0.5 >96 >3 <0.3 >97.5 >4 <0.1 >99 >6
Mist <1.5 >90 >1.5 <1 >94 >2 <0.5 >96 >3
Clear >1.5 <90 <15 >1 <94 <2 >0.5 <96 <3
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Table 3
Contingency table used in the validation process.

Forecasted
Fog Mist OK
Observed Fog a b c J
Mist d e f K
Clear g h i L
M N o T

from the 14 selected episodes during 2017, with a temporal resolution
of 1h. During the study period, fog was recorded 16.2% of the time,
whereas mist was present 27.4% of the time. Visibility was categorized
as OK during the remaining hours examined in the validation (56.4%).

4.2.1. Quantitative validation

First, we performed a quantitative validation for the variables T, Td,
RH and WSP. The averages for the 14 episodes in the study period are
shown in Table 4. Regarding T validation, all models showed slight un-
derestimation (—0.3 <BIAS <—0.2), with MAE about 1 °C. The temporal
correlation of T throughout the diurnal cycle is satisfactory, as shown
by values of r>0.92. Comparing the models, H38 and H40 were slightly
better than WRF in the estimation of T at GCXO. Maximum temperature
was simulated early during certain episodes by both H38 and H40, pos-
sibly causing earlier fog dissipation in the simulations than in reality.

From the validation of Td, BIAS values indicate moderate underes-
timation was detected for all the mesoscale models, with MAE = 1.6°C
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for H38 and H40, and slightly larger for the WRF (MAE = 1.8°C).
The temporal correlation is very good for all cases (r>0.84), although
slightly weaker than that of T. Similar results were obtained for RH,
with general moisture underestimation by the mesoscale models for
GCXO. MAE values of 9%-10% were obtained, and temporal correla-
tion was very disappointing (0.43 >r>0.54). The most accurate model
in the estimation of Td and RH near GCXO was H38, closely followed
by H40. The best temporal correlation in Td estimation with respect to
RH suggests the use of Td output by the mesoscale models as a moisture
indicator for GCXO.

Regarding WSP, there was slight underestimation from the H38
model and moderate underestimation by the WRF. In contrast, the H40
model appeared to correct the WSP underestimation and was even
characterized by slight overestimation (BIAS = 0.8 m/s), especially for
strong wind episodes. Consequently, the MAE was smaller for H40 and
larger for the WRF. The temporal correlation was satisfactory for both
the H38 and H40 models (r = 0.86 and 0.90, respectively), with poorer
results from WRF. In general, predictability was greater for W and NW
flows, which are characterized by strength and stability. However, the
models were less reliable in estimating southerly component winds,
because these are less strong. The models struggled with simulating
changes in wind direction, especially when there was no marked pres-
sure gradient. In the case of WSP, the H40 model clearly achieved the
best results, followed closely by H38. The results of WRF are very disap-
pointing.

Considering the TI, which considers all the variables as a whole, the
H38 and H40 models stand out for their satisfactory results (with H40
slightly better). Those of the WRF are not very accurate. The poorer
figures for the WRF model may be related to the cold-start used in its
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Fig. 2. Radiosonde data from island of Tenerife showing typical trade wind inversion.
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Table 4

Atmospheric Research xxx (xxxx) Xxx-Xxx

Results of the model validation for the variables T, Td, RH and WSP. The best results are highlighted in

WRF H38 H40

T Td RH WSP T Td RH WSP T Td RH WSP
BIAS -0.3 -1.6 -6.0 -2.0 -0.2 -1.3 -5.2 -1.0 -0.2 -1.4 -5.9 0.8
MAE 1.1 1.8 9.9 3.7 1.1 1.6 9.2 2.4 1.0 1.6 9.6 2.2
r 0.93 0.84 0.43 0.61 0.92 0.84 0.54 0.86 0.92 0.85 0.52 0.90
NI 0.3 0.2 0.2 2.2 -0.2 -0.2 -0.2 0.2 -0.2 -0.1 0.0 -0.3
TI 3.10 —0.50 —0.54

initialization and use of the GFS analysis for initial and boundary con-
ditions. The better results for H38 and H40 may be attributed to a more
complete assimilation system, in which observational data from a multi-
tude of sources are considered. This corrected deviations from the previ-
ous model cycle to produce an analysis used as initial conditions in the
warm start of the model.

4.2.2. Multi-categorical validation

Next, it was decided to execute a multi-categorical validation for
testing model performance in estimating visibility. This decision was
made after verifying that the results of a classical validation of a vari-
able such as visibility gave results that were difficult to interpret. Visibil-
ity has drastic variations that can lead to large errors in numerical mod-
els, even though observed and forecast visibilities are not problematic
for aviation operations. As previously mentioned, three categories were
defined, depending on observed and model-estimated visibility values
(fog, mist and OK). After developing respective contingency tables, the
FBI, FAR and FOM were calculated. Table 5 shows results of the three
mesoscale models and two methods of estimating visibility, i.e., using
the algorithm based on moisture (VISRH) or that based on hydrome-
teor concentration (VISHD). Results of the WRF model are disappoint-
ing, especially for the large number of false alarms. The FOM was good
when using the VISRH method, but showed substantial overestimation
of poor-visibility episodes.

Regarding results of the two versions of the HARMONIE-AROME
model, the outcomes were very similar when considering the VISRH
method. The forecasts were balanced (FBI around 1.05), with FOM
and FAR about 0.30 and 0.35, respectively. For the VISHD method,
we observed moderate overestimation of poor-visibility episodes from
H38, but this led to a very favorable FOM (0.22). In contrast, H40
slightly underestimated poor-visibility events, thereby increasing the
number of such events that were observed but not adequately predicted

Table 5
Results of the multi-categorical validation for the visibility based on T and RH (VISRH)
and visibility based on hydrometeors concentration (VISHD).

WRF H38 H40
VISRH VISHD VISRH VISHD VISRH VISHD
FBI 1.64 1.17 1.05 1.26 1.06 0.98
FAR 0.56 0.51 0.34 0.38 0.36 0.37
FOM 0.28 0.42 0.31 0.22 0.32 0.38
Table 6

(FOM = 0.38). The FAR was similar for both versions of HAR-
MONIE-AROME and both methods (0.34-0.38), markedly improving
the results of WRF.

Because the present work focused on providing operational forecast-
ers tools to maximize aviation safety during poor-visibility episodes, the
aim was to minimize the FOM, because unforeseen fog events can pose
a risk to aviation. Although it is also necessary to minimize the FAR, a
greater number of false alarms would activate the poor-visibility proto-
col of GCXO and not pose an immediate risk to air safety. Nilo et al.
(2018) obtained similar results (FAR = 0.31, FOM = 0.30) for a now-
casting system based on satellite observations, but our forecasting sys-
tem is able to predict fog 24h in advance. This demonstrates that the
results of H38 and H40 are satisfactory, especially considering the chal-
lenge of forecasting localized meteorological phenomena such as mist
and fog in complex terrain. The validation was developed exclusively
using data of poor-visibility episodes, which pose a greater challenge.

Analyzing the forecasts for each day of the study period individ-
ually, it was detected that the performance of both versions of the
HARMONIE-AROME model was case-dependent, because on some days
the H38 was more accurate in visibility estimation, whereas for other
episodes H40 yielded superior results. For this reason, and taking into
account that the validation results of both versions of HAR-
MONIE-AROME are similar, it was decided to use both models and
the two methods in the operational forecasting system. Thus, the op-
erational forecaster would have four different visibility estimates from
which to infer the risk of poor visibility at GCXO, as well as having a
measure of forecast uncertainty according to the ratio of products that
consider whether fog will form in the study area.

In addition to considering the VISRH and VISHD products, we vali-
dated three algorithms based on the exceedance of certain thresholds of
T—Td, RH and WSP. Results of the algorithms are listed in Table 6. Vis-
ibility varied sharply in a few minutes at GCXO. This is the reason we
also tested the algorithms with observed values, with the aim of apply-
ing them to the nowecasting of visibility.

As expected, best results were achieved using the observational data.
In this case, A2 produced the best results, with a FOM of only 0.11. This
algorithm slightly overestimates poor-visibility episodes (FBI = 1.24),
leading to FAR = 0.28. The other algorithms were discarded because
Al markedly overestimated the number of such episodes, whereas A3
showed notable underestimation. A2 results are outstanding compared
with similar nowcast products (Guijo-Rubio et al., 2018).

Results of the multi-categorical validation for the algorithms based on distinct thresholds of T-Td, RH and WSP.

OBSERVED WRF H38 H40

Al A2 A3 Al A2 A3 Al A2 A3 Al A2 A3
FBI 1.47 1.24 0.85 1.45 1.35 1.17 1.10 0.95 0.83 111 0.85 0.61
FAR 0.36 0.28 0.22 0.55 0.52 0.48 0.38 0.33 0.29 0.37 0.32 0.30
FOM 0.06 0.11 0.34 0.35 0.35 0.39 0.31 0.36 0.41 0.30 0.42 0.57
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Regarding the algorithms applied to mesoscale models, the worst re-
sults were once again obtained by the WRF model because of excessive
overestimation of poor-visibility events, yielding for every algorithm a
FAR around 0.50. To prioritize air safety, it was decided to choose the
algorithm that minimized FOM. As a result, A1 was chosen for both ver-
sions of the HARMONIE-AROME model. This algorithm had slight over-
estimation of poor-visibility episodes, with very satisfactory values of
FAR and FOM (around 0.37 and 0.30, respectively). The results of Al
for H38 and H40 are similar to those obtained by the VISRH and VISHD
products from the same mesoscale models, so its use can be complemen-
tary, with the performance of each method superior for certain episodes
or circumstances (e.g., wind direction and season).

Per the validation results, the use of A2 is recommended for the sys-
tem based on observational data, and Al is proposed for the H38 and
H40 versions of the HARMONIE-AROME model. The WRF setting used
in this research is not capable of simulating accurately poor visibility
episodes in this emplacement, but further research would be convenient
to find out if the results improve by using other physical parameteriza-
tions.

Because visibility forecasts are sensitive to both moisture quantity
and the predicted mass concentrations of hydrometeors (Bang et al.,
2008), all methods described in this paper are valid. Because the val-
idation results are similar (and very accurate) for VISRH, VISHD and

28.5°N

16.5°W 16°W
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the algorithms based on thresholds, all those methods are adequate for
forecasting poor visibility episodes at GCXO.

4.3. Forecast system

A poor-visibility episode on 13 December 2018 was selected to show
the potential of the forecast applications developed in our research.
First, information provided by mesoscale models was used to elaborate
the products for a short-term forecast. These forecast products are ori-
ented to the creation of TAF reports, with a lead time out to 24 h. Then,
several satellite products were used to aid the development of TREND
reports and potentially inform about errors in the model forecasts.

4.3.1. Short-term forecast

According to the validation results, use of the WRF model was re-
jected for operational forecast. Because the validation results for the
H38 and H40 models are very similar, it was decided to use both. Like-
wise, we considered the two methods to estimate visibility (VISRH and
VISHD). Thus, a greater amount of information is made available and
our prediction system therefore more robust.

Fig. 6 shows visibility estimated by the H38 and H40 models using
the VISRH and VISHD methods for a poor-visibility episode character-

28.5°N

28.5°N

16.5°W 16°W

Fig. 6. Visibility estimated by H38 (a, b) and H40 (¢, d) models using VISRH (a, ¢) and VISHD (b, d) methods at 09:00 UTC on 13 December 2018. Black dots indicate grid points nearest

the locations of GCXO R12 (left) and R30 (right).
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ized by a NW wind. In this example, the airport had reduced visibility
especially at R12 but also affecting R30. Unlike the H40 model, H38 did
not reproduce the drastic reduction of visibility in this case, simulating
only a risk of mist in the vicinity of GCXO.

Regarding differences between the two methods, the visibility reduc-
tion was sharper in the case of VISHD, going from visibility OK to fog,
with almost no areas of mist. The reduction was progressive using the
VISRH method.

The spread between models and methods to estimate visibility can
be interpreted as a measure of the predictability of an episode. For in-
stance, when fog is forecast by both models and methods, the forecaster
can be reasonably sure that poor visibility will occur. However, when
there are discrepancies between the various visibility estimates (as in
the case of Fig. 6), the reliability of the predictive system is poorer and
associated forecast uncertainty is greater.

In addition to the short-term forecast products, T-Td, RH, wind di-
rection and WSP fields estimated by H38 and H40 were also gener-
ated for supporting the decision-making process for constructing TAF
and TREND reports. Vertical profiles of T, Td and wind forecasts by
the HARMONIE-AROME model at the nearest grid point to each of the
GCXO runways are also available to the operational forecaster to pro-
vide information equivalent to radiosonde observations.

4.3.2. Nowcasting

Ultimately, the use of satellite products is proposed for the nowcast-
ing of poor-visibility episodes at GCXO. It is thereby possible to comple-
ment the information from the mesoscale models or have another source
of information when the models are not accurate. In addition, the prod-
uct obtained from the algorithm based on thresholds is described.

An image of the Cloud Type product is presented in Fig. 7, which
allows differentiation between low, medium, and high clouds, as well
as between thin and thick clouds. The accuracy of this product was
substantiated by the verification of Karlsson and Dybbroe (2010). The
product can be complemented by the Cloud Top Altitude product (Fig.
8), which furnishes information about cloud-top altitude in feet (ft).
Poor-visibility episodes at GCXO are related to stratocumulus, which
are identified as low or very low clouds in the Cloud Type prod-
uct, commonly with cloud-top altitude below 6000 ft. When the trade

NWC GEO CT Cloud Type
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Fig. 7. Image of Cloud Type product of NWC SAF during poor-visibility episode charac-
terized by NW flow. Copyright 2018 EUMETSAT.
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Fig. 8. Image of Cloud Top Altitude product of NWC SAF during poor-visibility episode
characterized by NW flow. Copyright 2018 EUMETSAT.

winds prevail as in the case shown by Figs. 7-9, low clouds usually form
north of Tenerife island, which may affect visibility at GCXO. The alti-
tude estimated by the aforementioned product is very reliable because
it was tested following the methodology in Karlsson and Johansson
(2013).

Finally, Fig. 9 shows an example of images generated by the Pre-
cipitable Water in Boundary Layer NWC SAF product over the Canary
Islands. In accord with monitoring during the months of the project,
precipitable water in the PBL in excess of 10mm is necessary for low
cloud development in the study area, which can lead to episodes of
poor visibility at GCXO. The risk of such episodes increases when pre-
cipitable water in the PBL is >15mm. The main limitation of the prod-
uct is that it is not available for areas covered by clouds. However, be-

|SHAI Precmltable Water in Boundary Layer

16 20 24 28 32

Fig. 9. Image of Precipitable Water in Boundary Layer product of NWC SAF during
poor-visibility episode characterized by NW flow. Copyright 2018 EUMETSAT.
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cause variations of precipitable water in the PBL are slight over large re-
gions, the product can reliably estimate water content in the study area
and in air masses approaching the Canary Islands, even when there are
large areas covered by cloudiness.

Finally, a tool was developed for indicating inferred visibility by
color-coding the runway threshold (OK: green; mist: yellow; fog: red)
based on if certain values of the variables T, Td, RH and WSP defined in
Table 2 are exceeded. In this way, an algorithm is developed to decide
the color-coding of each runway threshold on the application developed
for the operational forecasters. Owing to the particular characteristics of
fog, it requires sufficient kinetic energy provided by the wind, which is
transformed into potential energy during air mass ascent along the slope
of the hill on which GCXO is situated. A large moisture amount is also
needed so that the adiabatic cooling experienced during the ascent con-
denses the water vapor contained in the air mass. The tool was devel-
oped to complement the mesoscale models and satellite products, with
a focus on nowcasting. Because visibility in the study area changes very
rapidly, this tool is intended to anticipate such changes on a short scale
of a few minutes. For this reason, the monitoring of real-time observa-
tions can facilitate anticipation of a change in weather that forms fog in
the study area.

The aim of the above application is to alert regarding the risk of mist
or fog when certain observed conditions are fulfilled. For observed con-
ditions, A2 was selected in the validation, so this was used in develop-
ment of the application. As seen in Fig. 10, the risk of poor visibility
at R12 was indicated by the algorithm, because a NW wind stronger
than 4 kt was driving a moisture flow (RH>97.5%) that reduced T—-Td
to <0.3°C. In this example, as is usually the case during NW wind
episodes, visibility conditions were better at R30, where only the risk of
mist was indicated by the algorithm.

5. Conclusions

Visibility forecasts in the vicinity of airports are vital to maximize
aviation safety. However, this task is not easy for numerical weather
prediction models, especially for airports in complex terrain such as
GCXO. In such cases, the use of high-resolution mesoscale models is es-
sential to attain accurate visibility forecasts. The main conclusions of
our research are as follows.

- Poor visibility episodes in the vicinity of GCXO are related to trade
winds and a thermal inversion favored by the semi-permanent sub-
tropical high. At the mesoscale, trade winds are channeled through a
mountain pass where the airport is located, and the air mass (which
is typically moisture-laden after crossing the Atlantic Ocean) is forced

T/Td 16.4/16.2

V 340 07Kt
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Fig. 10. Application for inferring visibility from algorithm based on observed thresholds
of T-Td, RH and WSP.
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to ascend and cool adiabatically. When all factors are favorable, con-
densation is reached, forming low clouds in the study area.
Validation results of the H38 and H40 versions of HARMONIE-AROME
are satisfactory, especially for the variables T and WSP. The models
struggled with predicting variables related to humidity, but Td values
were accurately predicted. The performance of the methods proposed
herein for estimating visibility was outstanding, especially consider-
ing the local scale at which the analyzed meteorological phenomenon
develops, the complex terrain in which the airport is located, and the
poor predictability of the episodes selected as samples in the valida-
tion.

- Using the numerical weather prediction models, there is no single
method for estimating visibility that is clearly optimal at GCXO for
every poor-visibility episode. Consequently, a combination of informa-
tion provided by several methods may be useful, facilitating the evalu-
ation of uncertainty associated with the forecast of a specific episode.
For nowcasting, the use of products based on satellite images is greatly
encouraged, because they can provide information on moisture con-
tent in the PBL and alerts of the formation of low clouds around the
Canary Islands.

The application developed from the algorithm based on observed vari-
ables may allow the monitoring of realtime observations, enabling
forecasters to anticipate weather conditions favorable to fog develop-
ment.

In conclusion, the short-term and nowcasting products proposed in
this research may improve safety at GCXO and be applied to other air-
ports affected by low-visibility episodes, after analyzing specific char-
acteristics of the fog that develops at each location. This could be the
objective of future work, examining which airports are also affected by
poor visibility and adapting the tools developed herein to the needs of
each aerodrome.
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