18 research outputs found

    Recent Upgrades of the Gas Handling System for the Cryogenic Stopping Cell of the FRS Ion Catcher

    Full text link
    In this paper, the major upgrades and technical improvements of the buffer gas handling system for the cryogenic stopping cell of the FRS Ion Catcher at GSI/FAIR (in Darmstadt, Germany) are described. The upgrades include implementation of new gas lines and gas purifiers to achieve a higher buffer gas cleanliness for a more efficient extraction of reactive ions as well as suppression of the molecular background ionized in the stopping cell. Furthermore, additional techniques have been implemented for improved monitoring and quantification of the purity of the helium buffer gas

    Mass and half-life measurements of neutron-deficient iodine isotopes

    Get PDF
    Neutron-deficient iodine isotopes, 116I and 114I, were produced at relativistic energies by in-flight fragmentation at the Fragment Separator (FRS) at GSI. The FRS Ion Catcher was used to thermalize the ions and to perform highly accurate mass measurements with a Multiple-Reflection Time-of-Flight Mass-Spectrometer (MR-TOF-MS). The masses of both isotopes were measured directly for the first time. The half-life of the 114I was measured by storing the ions in an RF quadrupole for different storage times and counting the remaining nuclei with the MR-TOF-MS. The measured half-life was used to assign the ground state to the measured 114I ions. Predictions on the possible α-decay branch for 114I are presented based on the reduced uncertainties obtained for the Qα-value. Systematic studies of the mass surface were performed with the newly obtained masses, showing better agreement with the expected trend in this mass region.peerReviewe

    Mass Measurements of Neutron-Rich Gallium Isotopes Refine Production of Nuclei of the First r-Process Abundance Peak in Neutron Star Merger Calculations

    Get PDF
    We report mass measurements of neutron-rich Ga isotopes 80−85^{80-85}Ga with TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The measurements determine the masses of 80−83^{80-83}Ga in good agreement with previous measurements. The masses of 84^{84}Ga and 85^{85}Ga were measured for the first time. Uncertainties between 25−4825-48 keV were reached. The new mass values reduce the nuclear uncertainties associated with the production of A ≈\approx 84 isotopes by the \emph{r}-process for astrophysical conditions that might be consistent with a binary neutron star (BNS) merger producing a blue kilonova. Our nucleosynthesis simulations confirm that BNS merger may contribute to the first abundance peak under moderate neutron-rich conditions with electron fractions Ye=0.35−0.38Y_e=0.35-0.38

    First coupling of the FRS particle identification and the FRS-Ion Catcher data acquisition systems: The case of 109In

    Get PDF
    6 pags. 5 figs.For the first time, the FRagment Separator (FRS) and the Multiple-Reflection Time-Of-Flight Mass-Spectrometer (MR-TOF-MS) particle identification (PID) systems at GSI have been coupled. This new approach adds to the standard FRS PID an additional unambiguous identification of the fragments and the possibility to identify and count long-lived isomeric states (>ms). For this purpose, single-event timestamp information given by a common clock was used to correlate both systems. Two methods were implemented to improve the signal-to-background ratio by more than a factor 2 in the high resolution mass spectrum obtained with the MR-TOF-MS for the 109In isotope. Moreover, the coupling of the systems allows an improvement in the on-line monitoring of the FRS-Ion Catcher (IC) efficiency and extraction time. In addition, range calculations were implemented in the on-line monitoring; a powerful tool for real-time optimization of stopped beam experiments.The ELI-NP group was supported by Extreme Light Infrastructure Nuclear Physics (ELI-NP), Germany Phase II, a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund the Competitiveness Operational Programme (1/07.07.2016, COP,ID 1334) and by the Romanian Ministry of Research and Innovation under contract PN 19 06 01 05. This work was supported by the German Federal Ministry for Education and Research (BMBF) under contracts No. 05P19RGFN1, 05P12RGFN8 and 05P15RGFN1, by Justus Liebig University Gießen, Germany and GSI, Germany under the JLU-GSI strategic Helmholtz partnership agreement, by HGS-HIRe, and by theHessian Ministry for Science and Art (HMWK), Germany. O. Hall was supported by UKRI STFC, United Kingdom grant ST/P004008/1.Peer reviewe

    Quenching of the N=32 neutron shell closure studied via precision mass measurements of neutron-rich vanadium isotopes

    Get PDF
    We performed the first direct mass measurements of neutron-rich vanadium 52–55V isotopes passing the N=32 neutron shell closure with TRIUMF's Ion Trap for Atomic and Nuclear science. The new direct measurements confirm all previous indirect results. Through a reduced uncertainty of the mass of 55V we confirm the quenching of the N=32 neutron shell closure in vanadium. We discuss the evolution of the N=32 neutron shell closure between K and Cr and show similar signatures in the half-life surface when studied along the isotopic chains

    The science case of the FRS Ion Catcher for FAIR Phase-0

    Get PDF
    The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) at mass resolving powers of up to 410,000, with production cross sections down to the microbarn-level, and at rates down to a few ions per hour. The versatility of the MR-TOF-MS for isomer research has been demonstrated by the measurement of various isomers, determination of excitation energies and the production of a pure isomeric beam. Recently, several instrumental upgrades have been implemented at the FRS Ion Catcher. New experiments will be carried out during FAIR Phase-0 at GSI, including direct mass measurements of neutron-deficient nuclides below 100Sn and neutron-rich nuclides below 208Pb, measurement of β-delayed neutron emission probabilities and reaction studies with multi-nucleon transfer.Peer reviewe

    Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes

    Get PDF
    A precision mass investigation of the neutron-rich titanium isotopes 51−55^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32N=32 shell closure and the overall uncertainties of the 52−55^{52-55}Ti mass values were significantly reduced. Our results confirm the existence of a weak shell effect at N=32N=32, establishing the abrupt onset of this shell closure. Our data were compared with state-of-the-art \textit{ab-initio} shell model calculations which, despite very successfully describing where the N=32N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS), substantiated by independent measurements from TITAN's Penning trap mass spectrometer

    Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line

    Get PDF
    Mass measurements of the nuclides As69,Se70,71, and Br71, produced via fragmentation of a Xe124 primary beam at the Fragment Separator (FRS) at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1000000. Such high resolving power is the only way to achieve accurate results and resolve overlapping peaks of short-lived exotic nuclei, whose total number of accumulated events is always limited. For the nuclide As69, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only ten events. For the nuclide Se70, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of dm/m=4.0×10-8, with less than 500 events. The masses of the nuclides Se71 and Br71 have been measured with an uncertainty of 23 and 16 keV, respectively. Our results for the nuclides Se70,71 and Br71 are in good agreement with the 2016 Atomic Mass Evaluation, and our result for the nuclide As69 resolves the discrepancy between the previous indirect measurements. We measured also the mass of the molecule N14N15Ar40 (A=69) with a relative accuracy of dm/m=1.7×10-8, the highest yet achieved with an MR-TOF-MS. Our results show that the measured restrengthening of the proton-neutron interaction (dVpn) for odd-odd nuclei along the N=Z line above Z=29 (recently extended to Z=37) is hardly evident at the N-Z=2 line, and not evident at the N-Z=4 line. Nevertheless, detailed structure of dVpn along the N-Z=2 and N-Z=4 lines, confirmed by our mass measurements, may provide a hint regarding the ongoing ˜500 keV discrepancy in the mass value of the nuclide Br70, which prevents including it in the world average of Ft value for superallowed 0+?0+ ß decays. The reported work sets the stage for mass measurements with the FRS Ion Catcher of nuclei at and beyond the N=Z line in the same region of the nuclear chart, including the nuclide Br70
    corecore