35 research outputs found
Structural Basis of Outstanding Multivalent Effects in Jack Bean α-Mannosidase Inhibition
Multivalent design of glycosidase inhibitors is a promising strategy for the treatment of diseases involving enzymatic hydrolysis of glycosidic bonds in carbohydrates. An essential prerequisite for successful applications is the atomicâlevel understanding of how outstanding binding enhancement occurs with multivalent inhibitors. Herein we report the first highâresolution crystal structures of the Jack bean αâmannosidase (JBαâman) in apo and inhibited states. The threeâdimensional structure of JBαâman in complex with the multimeric cyclopeptoidâbased inhibitor displaying the largest binding enhancements reported so far provides decisive insight into the molecular mechanisms underlying multivalent effects in glycosidase inhibition.Instituto de FĂsica de LĂquidos y Sistemas BiolĂłgico
Design, synthesis, structure-activity relationships and X-ray structural studies of novel 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as selective and potent inhibitors of human aldose reductase
Human aldose reductase (AKR1B1, AR) is a key enzyme of the polyol pathway, catalyzing the reduction of glucose to sorbitol at high glucose concentrations, as those found in diabetic condition. Indeed, AKR1B1 overexpression is related to diabetes secondary complications and, in some cases, with cancer. For many years, research has been focused on finding new AKR1B1 inhibitors (ARIs) to overcome these diseases. Despite the efforts, most of the new drug candidates failed because of their poor pharmacokinetic properties and/or unacceptable side effects. Here we report the synthesis of a series of 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as novel ARIs. IC50 assays and X-ray crystallographic studies proved that these compounds are promising hits for further drug development, with high potency and selectivity against AKR1B1. Based on the determined X-ray structures with hit-to-lead compounds, we designed and synthesized a second series that yielded lead compound 68 (Kiapp vs. AKR1B1 = 73 nM). These compounds are related to the previously reported 2-aminopyrimido[4,5-c]quinolin-1(2H)-ones, which exhibit antimitotic activity. Regardless of their similarity, the 2-amino compounds are unable to inhibit AKR1B1 while the 2-acetic acid derivatives are not cytotoxic against fibrosarcoma HT-1080 cells. Thus, the replacement of the amino group by an acetic acid moiety changes their biological activity, improving their potency as ARIs
Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants
Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.Fil: Noguera, MartĂn Ezequiel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Vazquez, Diego Sebastian. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Ferrer Sueta, Gerardo. Universidad de la RepĂșblica; UruguayFil: Agudelo Suarez, William Armando. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Howard, Eduardo Ignacio. UniversitĂ© de Strasbourg; Francia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Rasia, Rodolfo Maximiliano. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Manta, Bruno. Universidad de la RepĂșblica; UruguayFil: Cousido Siah, Alexandra. UniversitĂ© de Strasbourg; FranciaFil: Mitschler, AndrĂ©. UniversitĂ© de Strasbourg; FranciaFil: Podjarny, Alberto Daniel. UniversitĂ© de Strasbourg; FranciaFil: Santos, Javier. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; Argentin
Identification of a novel polyfluorinated compound as a lead to inhibit human enzymes aldose reductase and AKR1B10 : structure determination of both ternary complexes and implications for drug design
Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved ([alpha]/[beta])8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-ÂNADP+-JF0064 complex has been determined at 0.85 Ă
resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystalloÂgraphic structure of the corresponding AKR1B10-NADP+-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts
Recommended from our members
Molecular recognition of agonist ligands by RXRs.
The nuclear receptor RXR is an obligate partner in many signal transduction pathways. We report the high-resolution structures of two complexes of the human RXRalpha ligand-binding domain specifically bound to two different and chemically unrelated agonist compounds: docosa hexaenoic acid, a natural derivative of eicosanoic acid, present in mammalian cells and recently identified as a potential endogenous RXR ligand in the mouse brain, and the synthetic ligand BMS 649. In both structures the RXR-ligand-binding domain forms homodimers and exhibits the active conformation previously observed with 9-cis-RA. Analysis of the differences in ligand-protein contacts (predominantly van der Waals forces) and binding cavity geometries and volumes for the several agonist-bound RXR structures clarifies the structural features important for ligand recognition. The L-shaped ligand-binding pocket adapts to the diverse ligands, especially at the level of residue N306, which might thus constitute a new target for drug-design. Despite its highest affinity 9-cis-RA displays the lowest number of ligand-protein contacts. These structural results support the idea that docosa hexaenoic acid and related fatty acids could be natural agonists of RXRs and question the real nature of the endogenous ligand(s) in mammalian cells
Structural investigation of the ligand binding domain of the zebrafish VDR in complexes with 1alpha,25(OH)2D3 and Gemini: purification, crystallization and preliminary X-ray diffraction analysis
The nuclear receptor of Vitamin D can be activated by a large number of agonist molecules with a wide spectrum in their stereochemical framework. Up to now most of our structural information related to the protein-ligand complex formation is based on an engineered ligand binding domain (LBD) of the human receptor. We now have extended our database, using a wild-type LBD from zebrafish that confirms the previously reported results and allows to investigate the binding of ligands that induce significant conformational changes at the protein level
The crystallographic structure of the aldose reductase-IDD552 complex shows direct proton donation from tyrosine 48
The X-ray crystal structure of human aldose reductase (ALR2) in complex with the inhibitor IDD552 was determined using crystals obtained from two crystallization conditions with different pH values (pH 5 and 8). In both structures the charged carboxylic head of the inhibitor binds to the active site, making hydrogen-bond interactions with His110 and Tyr48 and electrostatic interactions with NADP+. There is an important difference between the two structures: the observation of a double conformation of the carboxylic acid moiety of the inhibitor at pH 8, with one water molecule interacting with the main configuration. This is the first time that a water molecule has been observed deep inside the ALR2 active site. Furthermore, in the configuration with the lower occupancy factor the difference electron-density map shows a clear peak (2.5sigma) for the H atom in the hydrogen bond between the inhibitor's carboxylic acid and the Tyr48 side-chain O atom. The position of this peak implies that this H atom is shared between both O atoms, indicating possible direct proton transfer from this residue to the inhibitor. This fact agrees with the model of the catalytic mechanism, in which the proton is donated by the Tyr48 hydroxyl to the substrate. These observations are useful both in drug design and in understanding the ALR2 mechanism
Crystals of Thermus thermophilus tRNA Asp Complexed with its Cognate Aspartyl-tRNA Synthetase Have a Solvent Content of 75%. Comparison with Other Aminoacylation Systems
International audienceThermus thermophilus tRNA Asp , purified from a non-recombinant source, has been crystallized in a complex with its cognate dimeric (α2) aspartyl-tRNA synthetase. Crystals diffract to 2.9â
Ă
resolution and belong to space group P 6 3 with cell parameters a = b = 258, c = 90.9â
Ă
. The crystals contain one aspartyl-tRNA synthetase dimer and two tRNA molecules in the asymmetric unit, corresponding to a V m of 4.85â
Ă
3 Da â1 and 75% solvent content. When compared with those obtained for globular proteins these values are high, but fall within the range observed for other aminoacyl-tRNA synthetases, either free or complexed with their tRNAs. A comparative survey is presented here
Transmembrane Signaling across the Ligand-Gated FhuA Receptor
International audienceFhuA protein facilitates ligand-gated transport of ferrichrome-bound iron across Escherichia coli outer membranes. X-ray analysis at 2.7 A resolution reveals two distinct conformations in the presence and absence of ferrichrome. The monomeric protein consists of a hollow, 22-stranded, antiparallel beta barrel (residues 160-714), which is obstructed by a plug (residues 19-159). The binding site of ferrichrome, an aromatic pocket near the cell surface, undergoes minor changes upon association with the ligand. These are propagated and amplified across the plug, eventually resulting in substantially different protein conformations at the periplasmic face. Our findings reveal the mechanism of signal transmission and suggest how the energy-transducing TonB complex senses ligand binding