104 research outputs found

    Design and synthesis of aromatic molecules for probing electric-fields at the nanoscale

    Get PDF
    We propose using halogenated organic dyes as nanoprobes for electric field and show their greatly enhanced Stark coefficients using density functional theory (DFT) calculations. We analyse halogenated variants of three molecules that have been of interest for cryogenic single molecule spectroscopy, perylene, terrylene, and dibenzoterrylene, with the zero-phonon optical transitions at blue, red, and near infrared. Out of all the combinations of halides and binding sites that are calculated, we have found that fluorination of the optimum binding site induces a dipole difference between ground and excited states larger than 0.5 D for all three molecules with the highest value of 0.69 D for fluoroperylene. We also report on synthesis of 3-fluoroterrylene and bulk spectroscopy of this compound in liquid and solid organic environments.Comment: Article presented in Faraday Discussions on September 201

    CRISPR/Cas9-induced (CTG⋅CAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing

    Get PDF
    Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)n-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5′ or 3′ unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1

    Diacetylene polymerization on a bulk insulator surface

    Get PDF
    Richter A, Haapasilta V, Venturini C, et al. Diacetylene polymerization on a bulk insulator surface. Physical Chemistry Chemical Physics. 2017;19(23):15172-15176.Molecular electronics has great potential to surpass known limitations in conventional silicon-based technologies. The development of molecular electronics devices requires reliable strategies for connecting functional molecules by wire-like structures. To this end, diacetylene polymerization has been discussed as a very promising approach for contacting single molecules with a conductive polymer chain. A major challenge for future device fabrication is transferring this method to bulk insulator surfaces, which are mandatory to decouple the electronic structure of the functional molecules from the support surface. Here, we provide experimental evidence for diacetylene polymerization of 3,30-(1,3-butadiyne-1,4-diyl) bisbenzoic acid precursors on the (10.4) surface of calcite, a bulk insulator with a band gap of around 6 eV. When deposited on the surface held at room temperature, ordered islands with a (1 x 3) superstructure are observed using dynamic atomic force microscopy. A distinct change is revealed upon heating the substrate to 485 K. After heating, molecular stripes with a characteristic inner structure are formed that excellently match the expected diacetylene polymer chains in appearance and repeat distance. The corresponding density functional theory computations reveal molecular-level bonding patterns of both the (1 x 3) superstructure and the formed striped structure, confirming the assignment of on-surface diacetylene polymerization. Transferring the concept of using diacetylene polymerization for creating conductive connections to bulk insulator surfaces paves the way towards application-relevant systems for future molecular electronic devices

    On-Surface Covalent Linking of Organic Building Blocks on a Bulk Insulator

    Get PDF
    Kittelmann M, Rahe P, Nimmrich M, Hauke CM, Gourdon A, Kühnle A. On-Surface Covalent Linking of Organic Building Blocks on a Bulk Insulator. ACS Nano. 2011;5(10):8420-8425.On-surface synthesis in ultrahigh vacuum provides a promising strategy for creating thermally and chemically stable molecular structures at surfaces. The two-dimensional confinement of the educts, the possibility of working at higher (or lower) temperatures in the absence of solvent, and the templating effect of the surface bear the potential of preparing compounds that cannot be obtained in solution. Moreover, covalently linked conjugated molecules allow for efficient electron transport and are, thus, particularly interesting for future molecular electronics applications. When having these applications in mind, electrically insulating substrates are mandatory to provide sufficient decoupling of the molecular structure from the substrate surface. So far, however, on-surface synthesis has been achieved only on metallic substrates. Here we demonstrate the covalent linking of organic molecules on a bulk insulator, namely, calcite. We deliberately employ the strong electrostatic interaction between the carboxylate groups of halide-substituted benzoic adds and the surface calcium cations to prevent molecular desorption and to reach homolytic cleavage temperatures. This allows for the formation of aryl radicals and intermolecular coupling. By varying the number and position of the halide substitution, we rationally design the resulting structures, revealing straight lines, zigzag structures, and dimers, thus providing clear evidence for the covalent linking. Our results constitute an important step toward exploiting on-surface synthesis for molecular electronics and optics applications, which require electrically insulating rather than metallic supporting substrates

    Manipulating the Conformation of Single Organometallic Chains on Au(111)

    Get PDF
    The conformations of organometallic polymers formed via the bottom-up assembly of monomer units on a metal surface are investigated, and the relationship between the adsorption geometry of the individual monomer units, the conformational structure of the chain, and the overall shape of the polymer is explored. Iodine-functionalized monomer units deposited on a Au(111) substrate are found to form linear chain structures in which each monomer is linked to its neighbors via a Au adatom. Lateral manipulation of the linear chains using a scanning tunneling microscope allows the structure of the chain to be converted from a linear to a curved geometry, and it is shown that a transformation of the overall shape of the chain is coupled to a conformational rearrangement of the chain structure as well as a change in the adsorption geometry of the monomer units within the chain. The observed conformational structure of the curved chain is well-ordered and distinct from that of the linear chains. The structures of both the linear and curved chains are investigated by a combination of scanning tunneling microscopy measurements and theoretical calculations

    La Pedagogía Teatral como Ciencia de la Educación Teatral

    Full text link

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF
    corecore