25 research outputs found

    Integrating tools for an effective testing of connected and automated vehicles technologies

    Get PDF
    The development of connected and automated driving functions involves that the interaction of autonomous/ automated vehicles with the surrounding environment will increase. Accordingly, there is a necessity for an improvement in the usage of traditional tools of the automotive development process. This is a critical problem since the classic development process used in the automotive field uses a very simplified driver model and the traffic environment, while nowadays it should contemplate a realistic representation of these elements. To overcome this issue, the authors proposed an integrated simulation environment, based on the co-simulation of Matlab/Simulink environment with simulation of urban mobility, which allows for a realistic model of vehicle dynamic, control logics, driver behaviour and traffic conditions. Simulation tests have been performed to prove the reasoning for such a tool, and to show the capabilities of the instrument. By using the proposed platform, vehicles may be modelled with a higher level of details (with respect to microscopic simulators), while the autonomous/automated driving functions can be tested in realistic traffic scenarios where the features of the road traffic environment can be varied to verify in a realistic way the level of robustness of the on-board implemented functions

    LAMC2 marks a tumor-initiating cell population with an aggressive signature in pancreatic cancer

    Get PDF
    [Background]: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood.[Methods]: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-ÎČ) signaling.[Results]: We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-ÎČ signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-ÎČ type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells.[Conclusions]: We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.This work was supported by: Marie Curie IF (H2020-MSCA-IF-2015, #703753), My First AIRC Grant (MFAG-2017, #20206), POR Campania FESR 2014/2020 (Project SATIN) to E.L.; AIRC IG grant 2018 n.21420 to A.D.L.; FIMP to D.D.C.; AECC (Proye18046BATL_002) to E.B.; My First AIRC Grant (MFAG grant #23029), WorldWide Cancer Research (Research grant #20–0188), EASI Genomics consortium (TNA project #15158) and the World Cancer Research Fund (Seed grant #2021–1769) to A.C

    Fungitoxic activity of some cytochalasins and their derivatives on Phytophthora species

    No full text

    Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia

    No full text
    Degeneration of peripheral motor axons is a common feature of several debilitating diseases including complicated forms of hereditary spastic paraplegia. One such form is caused by loss of the mitochondrial energy-dependent protease paraplegin. Paraplegin-deficient mice display a progressive degeneration in several axonal tracts, characterized by the accumulation of morphological abnormal mitochondria. We show that adenoassociated virus–mediated (AAV-mediated) intramuscular delivery of paraplegin halted the progression of neuropathological changes and rescued mitochondrial morphology in the peripheral nerves of paraplegin-deficient mice. One single injection before onset of symptoms improved the motor performance of paraplegin-deficient mice for up to 10 months, indicating that the peripheral neuropathy contributes to the clinical phenotype. This study provides a proof of principle that gene transfer may be an effective therapeutic option for patients with paraplegin deficiency and demonstrates that AAV vectors can be successfully employed for retrograde delivery of an intracellular protein to spinal motor neurons, opening new perspectives for several hereditary axonal neuropathies of the peripheral nerves

    The G-protein-coupled receptor APJ is expressed in the second heart field and regulates Cerberus-Baf60c axis in embryonic stem cell cardiomyogenesis

    No full text
    Mammalian cardiomyogenesis occurs through a multistep process that requires a complex network of tightly regulated extracellular signals, which integrate with the genetic and epigenetic machinery to maintain, expand, and regulate the differentiation of cardiac progenitor cells. Pluripotent embryonic stem cells (ESCs) recapitulate many aspects of development, and have provided an excellent opportunity to dissect the molecular mechanisms underlying cardiomyogenesis, which is still incompletely defined

    Long Non-coding RNA T-UCstem1 Controls Progenitor Proliferation and Neurogenesis in the Postnatal Mouse Olfactory Bulb through Interaction with miR-9

    No full text
    Neural stem cell populations generate a wide spectrum of neuronal and glial cell types in a highly ordered fashion. MicroRNAs are essential regulators of this process. T-UCstem1 is a long non-coding RNA containing an ultraconserved element, and in vitro analyses in pluripotent stem cells provided evidence that it regulates the balance between proliferation and differentiation. Here we investigate the in vivo function of T-UCstem1. We show that T-UCstem1 is expressed in the forebrain neurogenic lineage that generates interneurons for the postnatal olfactory bulb. Gain of function in neural stem cells increased progenitor proliferation at the expense of neuron production, whereas knockdown had the opposite effect. This regulatory function is mediated by its interaction with miR-9-3p and miR-9-5p. Based thereon, we propose a mechanistic model for the role of T-UCstem1 in the dynamic regulation of neural progenitor proliferation during neurogenesis

    Cripto shapes macrophage plasticity and restricts EndMT in injured and diseased skeletal muscle

    Get PDF
    Macrophages are characterized by a high plasticity in response to changes in tissue microenvironment, which allows them to acquire different phenotypes and to exert essential functions in complex processes, such as tissue regeneration. Here, we report that the membrane protein Cripto plays a key role in shaping macrophage plasticity in skeletal muscle during regeneration and disease. Conditional deletion of Cripto in the myeloid lineage (CriptoMy-LOF ) perturbs MP plasticity in acutely injured muscle and in mouse models of Duchenne muscular dystrophy (mdx). Specifically, CriptoMy-LOF macrophages infiltrate the muscle, but fail to properly expand as anti-inflammatory CD206+ macrophages, which is due, at least in part, to aberrant activation of TGFÎČ/Smad signaling. This reduction in macrophage plasticity disturbs vascular remodeling by increasing Endothelial-to-Mesenchymal Transition (EndMT), reduces muscle regenerative potential, and leads to an exacerbation of the dystrophic phenotype. Thus, in muscle-infiltrating macrophages, Cripto is required to promote the expansion of the CD206+ anti-inflammatory macrophage type and to restrict the EndMT process, providing a direct functional link between this macrophage population and endothelial cells.This work is supported by AFM 21534, SATIN‐POR Campania FESR 2014/2020, Italian Ministry of Education‐University‐Research (CTN01_00177 Cluster ALISEI_IRMI; PRIN 2017XJ38A4) and AIRC (IG20736) to GM; and by the Spanish Ministry of Science and Innovation, Spain [grants SAF2015‐67369‐R, RTI2018‐096068‐B‐I00 and SAF2015‐70270‐REDT, a MarĂ­a de Maeztu Unit of Excellence award to UPF (MDM‐2014‐0370), and a Severo Ochoa Center of Excellence award to the CNIC (SEV‐2015‐0505)], the UPF‐CNIC collaboration agreement, ERC‐2016‐AdG‐741966, La Caixa‐HEALTH (HR17‐00040), MDA, UPGRADE‐H2020‐825825, AFM 653, and DPP‐E

    Defensive Mutualism of Endophytic Fungi: Effects of Sphaeropsidin A against a Model Lepidopteran Pest

    No full text
    Sphaeropsidin A (SphA) is a pimarane diterpene produced by several fungi associated with plants. Following previous evidence of insecticidal properties of SphA, we investigated its contact and oral toxicity against the model chewing lepidopteran Spodoptera littoralis. The compound showed no lethal effect when directly sprayed on larvae, while it produced an evident oral toxic effect, associated with sublethal effects. These results demonstrated that SphA might play a defensive role against lepidopteran insects in plants harboring the producing fungus, depending on the extent at which the endophytic strains are able to perform biosynthesis of this and eventually other bioactive metabolites in vivo

    Defensive Mutualism of Endophytic Fungi: Effects of Sphaeropsidin A against a Model Lepidopteran Pest

    No full text
    Sphaeropsidin A (SphA) is a pimarane diterpene produced by several fungi associated with plants. Following previous evidence of insecticidal properties of SphA, we investigated its contact and oral toxicity against the model chewing lepidopteran Spodoptera littoralis. The compound showed no lethal effect when directly sprayed on larvae, while it produced an evident oral toxic effect, associated with sublethal effects. These results demonstrated that SphA might play a defensive role against lepidopteran insects in plants harboring the producing fungus, depending on the extent at which the endophytic strains are able to perform biosynthesis of this and eventually other bioactive metabolites in vivo
    corecore