9 research outputs found

    Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS

    Get PDF
    Funding: This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under contract N6600117C4012, by the National Institutes of Health under grant U01NS090596, by the Leverhulme Trust (RPG-2017-231) and by the Alexander von Humboldt Stiftung (Humboldt-Professorship to M.C.G.). This work was performed in part at the Columbia Nano Initiative cleanroom facility, at the CUNY Advanced Science Research Center Nanofabrication Facility, and at the Singh Center for Nanotechnology, part of the National Nanotechnology Coordinated Infrastructure Program, which is supported by the National Science Foundation grant NNCI-2025608. C.-K.M. acknowledges funding from the European Commission through a Marie-Skłodowska Curie Individual Fellowship (101029807).The use of optogenetic stimulation to evoke neuronal activity in targeted neural populations—enabled by opsins with fast kinetics, high sensitivity and cell-type and subcellular specificity—is a powerful tool in neuroscience. However, to interface with the opsins, deep-brain light delivery systems are required that match the scale of the spatial and temporal control offered by the molecular actuators. Here we show that organic light-emitting diodes can be combined with complementary metal–oxide–semiconductor technology to create bright, actively multiplexed emissive elements. We create implantable shanks in which 1,024 individually addressable organic light-emitting diode pixels with a 24.5 µm pitch are integrated with active complementary metal–oxide–semiconductor drive and control circuitry. This integration is enabled by controlled electrode conditioning, monolithic deposition of the organic light-emitting diodes and optimized thin-film encapsulation. The resulting probes can be used to access brain regions as deep as 5 mm and selectively activate individual neurons with millisecond-level precision in mice.Publisher PDFPeer reviewe

    Synthesis, design and characterization of caged compounds to be used in vivo

    No full text
    En este trabajo se describe la síntesis y caracterización de compuestos enjaulados a base de rutenio para ser utilizados en experimentos neurofisiológicos in vivo. Estos compuestos pueden liberar diversos neurotransmisores/neuromoduladores al ser irradiados con luz visible, ya fueron probados con éxito en distintas preparaciones in vitro y existen resultados preliminares de su posible uso en animales bajo anestesia. Aquí se muestra por primera vez la posibilidad de alterar la actividad cerebral a través de la administración y posterior activación con luz de compuestos enjaulados de rutenio en animales moviéndose libremente. En particular, se presenta un nuevo miembro de la familia de estos compuestos, la RuBi-Dopa, la cual libera el neuromodulador dopamina al ser irradiado con luz. Su funcionalidad es probada tanto en régimen de un fotón con luz visible (405-532 nm) como de dos fotones con luz infrarroja (800 nm), demostrando así el amplio espectro de posibilidades que ofrece este nuevo complejo. Luego de su liberación, el neuromodulador actúa sobre los receptores correspondientes provocando cambios en la actividad neuronal. Para mostrar esto, RuBi-Dopa fue liberada en régimen de dos fotones logrando una gran resolución espacial tal que permitió estimular neuronas a nivel de espinas dendríticas. El compuesto también se administró en ratas vivas y moviéndose libremente, observando alteraciones en la actividad cerebral luego de su activación a través de una fibra óptica ubicada en el cerebro, demostrando así su funcionalidad in vivo, sin efectos secundarios detectables.Ruthenium-based caged compounds are complexes capable of releasing biologically relevant molecules when irradiated with visible light. This raises the possibility of stimulating neurons and tissues with high spatial and temporal resolution. In past studies, they have been used in different systems to activate neuronal receptors in vitro as well as in vivo experiments. A recently incorporated member of the ruthenium-based caged compounds family is RuBi-Dopa, a complex that releases the neuromodulator dopamine when irradiated with blue/green light. This complex has recently been used to activate dopamine receptors at the level of single dendritic spines. In the present work, we report for the first time the use of a ruthenium-based caged compound in live, freely-moving rats. The animals were chronically implanted in prefrontal cortex with a multi-electrode matrix containing a cannula through which the complex is injected and a fiber optic is placed that allows the light to activate it. As the animal is allowed to freely explore the arena, neuronal activity is recorded before, during and after the dopamine release. We found significant changes in neuronal activity induced by dopamine uncaging, as changes in the strength and frequency range of the phase-amplitude modulation in prefrontal cortex. Thus, we present here a novel method for the administration and activation of ruthenium-based caged compounds in live, freelymoving animals, opening the possibility to stimulate many kinds of neuronal receptors without any previous treatment.Fil:Andino Pavlovsky, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Two-Photon Optical Interrogation of Individual Dendritic Spines with Caged Dopamine

    Get PDF
    We introduce a novel caged dopamine compound (RuBi-Dopa) based on ruthenium photochemistry. RuBi-Dopa has a high uncaging efficiency and can be released with visible (blue-green) and IR light in a two-photon regime. We combine two-photon photorelease of RuBi-Dopa with two-photon calcium imaging for an optical imaging and manipulation of dendritic spines in living brain slices, demonstrating that spines can express functional dopamine receptors. This novel compound allows mapping of functional dopamine receptors in living brain tissue with exquisite spatial resolution.Fil: Araya, Roberto. Columbia University; Estados UnidosFil: Andino Pavlovsky, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Yuste, Rafael. Columbia University; Estados UnidosFil: Etchenique, Roberto Argentino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentin

    Two-Photon Optical Interrogation of Individual Dendritic Spines with Caged Dopamine

    No full text
    We introduce a novel caged dopamine compound (RuBi-Dopa) based on ruthenium photochemistry. RuBi-Dopa has a high uncaging efficiency and can be released with visible (blue-green) and IR light in a two-photon regime. We combine two-photon photorelease of RuBi-Dopa with two-photon calcium imaging for an optical imaging and manipulation of dendritic spines in living brain slices, demonstrating that spines can express functional dopamine receptors. This novel compound allows mapping of functional dopamine receptors in living brain tissue with exquisite spatial resolution

    Fast Optical pH Manipulation and Imaging

    No full text
    We describe a complete system for optical pH manipulation and imaging. The system consists of a photoactive Ruthenium complex capable of inducing a change of more than 5 pH units at the nanosecond time scale. A compatible imaging system acquires microscopic pH images at 1200 fps using a nonexpensive commercial digital camera and an LED illumination system. We use the system as a superb tool to investigate flow in Flow Injection Analysis (FIA) models

    Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    Get PDF
    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC.Fil: Andino Pavlovsky, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Souza, Annie C.. Universidade Federal do Rio Grande do Norte; BrasilFil: Scheffer Teixeira, Robson. Universidade Federal do Rio Grande do Norte; BrasilFil: Tort, Adriano B. L.. Universidade Federal do Rio Grande do Norte; BrasilFil: Etchenique, Roberto Argentino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Ribeiro, Sidarta. Universidade Federal do Rio Grande do Norte; Brasi

    Application of a sub-0.1-mm<sup>3</sup> implantable mote for in vivo real-time wireless temperature sensing

    No full text
    There has been increasing interest in wireless, miniaturized implantable medical devices for in vivo and in situ physiological monitoring. Here, we present such an implant that uses a conventional ultrasound imager for wireless powering and data communication and acts as a probe for real-time temperature sensing, including the monitoring of body temperature and temperature changes resulting from therapeutic application of ultrasound. The sub-0.1-mm3, sub-1-nW device, referred to as a mote, achieves aggressive miniaturization through the monolithic integration of a custom low-power temperature sensor chip with a microscale piezoelectric transducer fabricated on top of the chip. The small displaced volume of these motes allows them to be implanted or injected using minimally invasive techniques with improved biocompatibility. We demonstrate their sensing functionality in vivo for an ultrasound neurostimulation procedure in mice. Our motes have the potential to be adapted to the distributed and localized sensing of other clinically relevant physiological parameters.Bio-Electronic
    corecore