72 research outputs found

    Alzheimer's disease: Clues from flies and worms

    Get PDF
    AbstractPresenilin mutations give rise to familial Alzheimer's disease and result in elevated production of amyloid β peptide. Recent evidence that presenilins act in developmental signalling pathways may be the key to understanding how senile plaques, neurofibrillary tangles and apoptosis are all biochemically linked

    Differential effects of apolipoprotein E isoforms on phosphorylation at specific sites on tau by glycogen synthase kinase-3β identified by nano-electrospray mass spectrometry

    Get PDF
    AbstractPreviously published data have shown an allele-specific variation in the in vitro binding of apolipoprotein E (apoE) to tau, which prompted the hypothesis that apoE binding may protect tau from phosphorylation, apoE3 being more efficient than apoE4. We have, therefore, investigated the effects of apoE on tau phosphorylation in vitro by the proline-directed kinase, glycogen synthase kinase (GSK)-3β. The phosphopeptide maps of tau alone, of tau with apoE3 and of tau with apoE4 were very similar. When apoE2 was present a further four spots were evident. Additionally, of the 15 peptides phosphorylated in the presence or absence of apoE, subtle differences, some isoform-specific, in the relative amounts of phosphorylation were observed

    Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments

    Get PDF
    Neurofilaments possess side arms that comprise the carboxy-terminal domains of neurofilament middle and heavy chains (NFM and NFH); that of NFH is heavily phosphorylated in axons. Here, we demonstrate that phosphorylation of NFH side arms is a mechanism for regulating transport of neurofilaments through axons. Mutants in which known NFH phosphorylation sites were mutated to preclude phosphorylation or mimic permanent phosphorylation display altered rates of transport in a bulk transport assay. Similarly, application of roscovitine, an inhibitor of the NFH side arm kinase Cdk5/p35, accelerates neurofilament transport. Analyses of neurofilament movement in transfected living neurons demonstrated that a mutant mimicking permanent phosphorylation spent a higher proportion of time pausing than one that could not be phosphorylated. Thus, phosphorylation of NFH slows neurofilament transport, and this is due to increased pausing in neurofilament movement

    Mislocalization of neuronal tau in the absence of tangle pathology in phosphomutant tau knockin mice.

    Get PDF
    Hyperphosphorylation and fibrillar aggregation of the microtubule-associated protein tau are key features of Alzheimer's disease and other tauopathies. To investigate the involvement of tau phosphorylation in the pathological process, we generated a pair of complementary phosphomutant tau knockin mouse lines. One exclusively expresses phosphomimetic tau with 18 glutamate substitutions at serine and/or threonine residues in the proline-rich and first microtubule-binding domains to model hyperphosphorylation, whereas its phosphodefective counterpart has matched alanine substitutions. Consistent with expected effects of genuine phosphorylation, association of the phosphomimetic tau with microtubules and neuronal membranes is severely disrupted in vivo, whereas the phosphodefective mutations have more limited or no effect. Surprisingly, however, age-related mislocalization of tau is evident in both lines, although redistribution appears more widespread and more pronounced in the phosphomimetic tau knockin. Despite these changes, we found no biochemical or immunohistological evidence of pathological tau aggregation in mice of either line up to at least 2 years of age. These findings raise important questions about the role of tau phosphorylation in driving pathology in human tauopathies

    Tyrosine Phosphorylation of Tau by the Src Family Kinases Lck and Fyn

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tau protein is the principal component of the neurofibrillary tangles found in Alzheimer's disease, where it is hyperphosphorylated on serine and threonine residues, and recently phosphotyrosine has been demonstrated. The Src-family kinase Fyn has been linked circumstantially to the pathology of Alzheimer's disease, and shown to phosphorylate Tyr18. Recently another Src-family kinase, Lck, has been identified as a genetic risk factor for this disease.</p> <p>Results</p> <p>In this study we show that Lck is a tau kinase. <it>In vitro</it>, comparison of Lck and Fyn showed that while both kinases phosphorylated Tyr18 preferentially, Lck phosphorylated other tyrosines somewhat better than Fyn. In co-transfected COS-7 cells, mutating any one of the five tyrosines in tau to phenylalanine reduced the apparent level of tau tyrosine phosphorylation to 25-40% of that given by wild-type tau. Consistent with this, tau mutants with only one remaining tyrosine gave poor phosphorylation; however, Tyr18 was phosphorylated better than the others.</p> <p>Conclusions</p> <p>Fyn and Lck have subtle differences in their properties as tau kinases, and the phosphorylation of tau is one mechanism by which the genetic risk associated with Lck might be expressed pathogenically.</p

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients

    Get PDF
    Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.</p

    Seeding Science, Courting Conclusions: Reexamining the Intersection of Science, Corporate Cash, and the Law

    Full text link
    Social scientists have expressed strong views on corporate influences over science, but most attention has been devoted to broad, Black/White arguments, rather than to actual mechanisms of influence. This paper summarizes an experience where involvement in a lawsuit led to the discovery of an unexpected mechanism: A large corporation facing a multibillion-dollar court judgment quietly provided generous funding to well-known scientists (including at least one Nobel prize winner) who would submit articles to "open," peer-reviewed journals, so that their "unbiased science" could be cited in an appeal to the Supreme Court. On balance, the corporation's most effective techniques of influence may have been provided not by overt pressure, but by encouraging scientists to continue thinking of themselves as independent and impartial
    corecore