1,410 research outputs found

    Critical Exponents of the Three Dimensional Random Field Ising Model

    Full text link
    The phase transition of the three--dimensional random field Ising model with a discrete (±h\pm h) field distribution is investigated by extensive Monte Carlo simulations. Values of the critical exponents for the correlation length, specific heat, susceptibility, disconnected susceptibility and magnetization are determined simultaneously via finite size scaling. While the exponents for the magnetization and disconnected susceptibility are consistent with a first order transition, the specific heat appears to saturate indicating no latent heat. Sample to sample fluctuations of the susceptibilty are consistent with the droplet picture for the transition.Comment: Revtex, 10 pages + 4 figures included as Latex files and 1 in Postscrip

    Breakdown of the semiclassical approximation during the early stages of preheating

    Get PDF
    The validity of the semiclassical approximation is investigated during the preheating phase in models of chaotic inflation using a modification of a criterion previously proposed for semiclassical gravity. If the modified criterion is violated then fluctuations of the two-point function for the quantum elds are large and the semiclassical approximation is not valid. Evidence is provided that the semiclassical approximation breaks down during the early stages of preheating, well before either scattering effects or backreaction effects are important

    Non-spiky density of states of an icosahedral quasicrystal

    Full text link
    The density of states of the ideal three-dimensional Penrose tiling, a quasicrystalline model, is calculated with a resolution of 10 meV. It is not spiky. This falsifies theoretical predictions so far, that spikes of width 10-20 meV are generic for the density of states of quasicrystals, and it confirms recent experimental findings. The qualitative difference between our results and previous calculations is partly explained by the small number of k points that has usually been included in the evaluation of the density of states of periodic approximants of quasicrystals. It is also shown that both the density of states of a small approximant of the three-dimensional Penrose tiling and the density of states of the ideal two-dimensional Penrose tiling do have spiky features, which also partly explains earlier predictions.Comment: 8 pages, 4 figures. Changes in this version: longer introduction, details of figures shown in inset

    Mass Azithromycin Distribution and Community Microbiome: A Cluster-Randomized Trial.

    Get PDF
    BackgroundMass distributions of oral azithromycin have long been used to eliminate trachoma, and they are now being proposed to reduce childhood mortality. The observed benefit appears to be augmented with each additional treatment, suggesting a possible community-level effect. Here, we assess whether 2 biannual mass treatments of preschool children affect the community's gut microbiome at 6 months after the last distribution.MethodsIn this cluster-randomized controlled trial, children aged 1-60 months in the Dossa region of Niger were randomized at the village level to receive a single dose of azithromycin or placebo every 6 months. Fecal samples were collected 6 months after the second treatment for metagenomic deep sequencing. The prespecified primary outcome was the Euclidean PERMANOVA of the gut microbiome, or effectively the distance between the genus-level centroid at the community level, with the secondary outcome being the Simpson's α diversity.ResultsIn the azithromycin arm, the gut microbial structures were significantly different than in the placebo arm (Euclidean PERMANOVA, P < .001). Further, the diversity of the gut microbiome in the azithromycin arm was significantly lower than in the placebo arm (inverse Simpson's index, P = .005).ConclusionsTwo mass azithromycin administrations, 6 months apart, in preschool children led to long-term alterations of the gut microbiome structure and community diversity. Here, long-term microbial alterations in the community did not imply disease but were associated with an improvement in childhood mortality.Clinical trials registrationNCT02048007

    Approaching the Problem of Time with a Combined Semiclassical-Records-Histories Scheme

    Full text link
    I approach the Problem of Time and other foundations of Quantum Cosmology using a combined histories, timeless and semiclassical approach. This approach is along the lines pursued by Halliwell. It involves the timeless probabilities for dynamical trajectories entering regions of configuration space, which are computed within the semiclassical regime. Moreover, the objects that Halliwell uses in this approach commute with the Hamiltonian constraint, H. This approach has not hitherto been considered for models that also possess nontrivial linear constraints, Lin. This paper carries this out for some concrete relational particle models (RPM's). If there is also commutation with Lin - the Kuchar observables condition - the constructed objects are Dirac observables. Moreover, this paper shows that the problem of Kuchar observables is explicitly resolved for 1- and 2-d RPM's. Then as a first route to Halliwell's approach for nontrivial linear constraints that is also a construction of Dirac observables, I consider theories for which Kuchar observables are formally known, giving the relational triangle as an example. As a second route, I apply an indirect method that generalizes both group-averaging and Barbour's best matching. For conceptual clarity, my study involves the simpler case of Halliwell 2003 sharp-edged window function. I leave the elsewise-improved softened case of Halliwell 2009 for a subsequent Paper II. Finally, I provide comments on Halliwell's approach and how well it fares as regards the various facets of the Problem of Time and as an implementation of QM propositions.Comment: An improved version of the text, and with various further references. 25 pages, 4 figure

    Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors

    Full text link
    There has been an intense search in recent years for long-lived spin-polarized carriers for spintronic and quantum-computing devices. Here we report that spin polarized quasi-particles in superconducting aluminum layers have surprisingly long spin-lifetimes, nearly a million times longer than in their normal state. The lifetime is determined from the suppression of the aluminum's superconductivity resulting from the accumulation of spin polarized carriers in the aluminum layer using tunnel spin injectors. A Hanle effect, observed in the presence of small in-plane orthogonal fields, is shown to be quantitatively consistent with the presence of long-lived spin polarized quasi-particles. Our experiments show that the superconducting state can be significantly modified by small electric currents, much smaller than the critical current, which is potentially useful for devices involving superconducting qubits

    Self force on static charges in Schwarzschild spacetime

    Get PDF
    We study the self forces acting on static scalar and electric test charges in the spacetime of a Schwarzschild black hole. The analysis is based on a direct, local calculation of the self forces via mode decomposition, and on two independent regularization procedures: A spatially-extended particle model method, and on a mode-sum regularization prescription. In all cases we find excellent agreement with the known exact results.Comment: 21 pages, 9 Encapsulated PostScript figures, submitted to Class. Quantum Gra

    Critical Behavior of the Supersolid transition in Bose-Hubbard Models

    Full text link
    We study the phase transitions of interacting bosons at zero temperature between superfluid (SF) and supersolid (SS) states. The latter are characterized by simultaneous off-diagonal long-range order and broken translational symmetry. The critical phenomena is described by a long-wavelength effective action, derived on symmetry grounds and verified by explicit calculation. We consider two types of supersolid ordering: checkerboard (X) and collinear (C), which are the simplest cases arising in two dimensions on a square lattice. We find that the SF--CSS transition is in the three-dimensional XY universality class. The SF--XSS transition exhibits non-trivial new critical behavior, and appears, within a d=3ϵd=3-\epsilon expansion to be driven generically first order by fluctuations. However, within a one--loop calculation directly in d=2d=2 a strong coupling fixed point with striking ``non-Bose liquid'' behavior is found. At special isolated multi-critical points of particle-hole symmetry, the system falls into the 3d Ising universality class.Comment: RevTeX, 24 pages, 16 figures. Also available at http://www.cip.physik.tu-muenchen.de/tumphy/d/T34/Mitarbeiter/frey.htm

    Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model

    Full text link
    Recent comparisons of minimal supergravity (mSUGRA) model predictions with WMAP measurements of the neutralino relic density point to preferred regions of model parameter space. We investigate the reach of linear colliders (LC) with s=0.5\sqrt{s}=0.5 and 1 TeV for SUSY in the framework of the mSUGRA model. We find that LCs can cover the entire stau co-annihilation region provided \tan\beta \alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter space, specialized cuts are suggested to increase the reach in this important ``dark matter allowed'' area. In the case of the HB/FP region, the reach of a LC extends well past the reach of the CERN LHC. We examine a case study in the HB/FP region, and show that the MSSM parameters μ\mu and M2M_2 can be sufficiently well-measured to demonstrate that one would indeed be in the HB/FP region, where the lightest chargino and neutralino have a substantial higgsino component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to conform with published versio
    corecore