8,822 research outputs found
Awake chronic mouse model of targeted pial vessel occlusion via photothrombosis
Animal models of stroke are used extensively to study the mechanisms involved in the acute and chronic phases of recovery following stroke. A translatable animal model that closely mimics the mechanisms of a human stroke is essential in understanding recovery processes as well as developing therapies that improve functional outcomes. We describe a photothrombosis stroke model that is capable of targeting a single distal pial branch of the middle cerebral artery with minimal damage to the surrounding parenchyma in awake head-fixed mice. Mice are implanted with chronic cranial windows above one hemisphere of the brain that allow optical access to study recovery mechanisms for over a month following occlusion. Additionally, we study the effect of laser spot size used for occlusion and demonstrate that a spot size with small axial and lateral resolution has the advantage of minimizing unwanted photodamage while still monitoring macroscopic changes to cerebral blood flow during photothrombosis. We show that temporally guiding illumination using real-time feedback of blood flow dynamics also minimized unwanted photodamage to the vascular network. Finally, through quantifiable behavior deficits and chronic imaging we show that this model can be used to study recovery mechanisms or the effects of therapeutics longitudinally.R01 EB021018 - NIBIB NIH HHS; R01 MH111359 - NIMH NIH HHS; R01 NS108472 - NINDS NIH HHSPublished versio
Holographic Superconductors
A holographic model of superconductors based on the action proposed by
Benini, Herzog, and Yarom [arXiv:1006.0731] is studied. This model has a
charged spin two field in an AdS black hole spacetime. Working in the probe
limit, the normalizable solution of the spin two field in the bulk gives rise
to a superconducting order parameter at the boundary of the AdS. We
calculate the fermion spectral function in this\ superconducting background and
confirm the existence of fermi arcs for non-vanishing Majorana couplings. By
changing the relative strength of the and condensations, the
position and the size of the fermi arcs are changed. When , the
spectrum becomes isotropic and the spectral function is s-wave like. By
changing the fermion mass, the fermi momentum is changed. We also calculate the
conductivity for these holographic superconductors where time reversal
symmetry has been broken spontaneously. A non-vanishing Hall conductivity is
obtained even without an external magnetic field.Comment: 24 pages,17 figures, Add more discussions on hall conductivity, two
new figures, Matched with published versio
Quantum Back Reaction to asymptotically AdS Black Holes
We analyze the effects of the back reaction due to a conformal field theory
(CFT) on a black hole spacetime with negative cosmological constant. We study
the geometry numerically obtained by taking into account the energy momentum
tensor of CFT approximated by a radiation fluid. We find a sequence of
configurations without a horizon in thermal equilibrium (CFT stars), followed
by a sequence of configurations with a horizon. We discuss the thermodynamic
properties of the system and how back reaction effects alter the space-time
structure. We also provide an interpretation of the above sequence of solutions
in terms of the AdS/CFT correspondence. The dual five-dimensional description
is given by the Karch-Randall model, in which a sequence of five-dimensional
floating black holes followed by a sequence of brane localized black holes
correspond to the above solutions.Comment: 13 pages, 10 figure
Visual population receptive fields in people with schizophrenia have reduced inhibitory surrounds
People with schizophrenia (SZ) experience abnormal visual perception on a range of visual tasks, which have been linked to abnormal synaptic transmission and an imbalance between cortical excitation and inhibition. However differences in the underlying architecture of visual cortex neurons, which might explain these visual anomalies, have yet to be reported in vivo. Here, we probe the neural basis of these deficits by using functional MRI (fMRI) and population receptive field (pRF) mapping to infer properties of visually responsive neurons in people with SZ. We employed a Difference-of-Gaussian (DoG) model to capture the centre-surround configuration of the pRF, providing critical information about the spatial scale of the pRFs inhibitory surround. Our analysis reveals that SZ is associated with reduced pRF size in early retinotopic visual cortex as well as a reduction in size and depth of the inhibitory surround in V1, V2 and V4. We consider how reduced inhibition might explain the diverse range of visual deficits reported in SZ. SIGNIFICANCE STATEMENT: People with schizophrenia (SZ) experience abnormal perception on a range of visual tasks, which has been linked to abnormal synaptic transmission and an imbalance between cortical excitation/inhibition. However associated differences in the underlying architecture of visual cortex neurons have yet to be reported in vivo. We used fMRI and population receptive field (pRF) mapping to demonstrate that the fine-grained functional architecture of visual cortex in people with SZ differs from unaffected controls. SZ is associated with reduced pRF size in early retinotopic visual cortex, largely due to reduced inhibitory surrounds. An imbalance between cortical excitation and inhibition could drive such a change in the centre-surround pRF configuration, and ultimately explain the range of visual deficits experienced in SZ
Experimental validation of a new biphasic model of the contact mechanics of the porcine hip
Hip models that incorporate the biphasic behaviour of articular cartilage can improve understanding of the joint function, pathology of joint degeneration and effect of potential interventions. The aim of this study was to develop a specimen-specific biphasic finite element model of a porcine acetabulum incorporating a biphasic representation of the articular cartilage and to validate the model predictions against direct experimental measurements of the contact area in the same specimen. Additionally, the effect of using a different tension-compression behaviour for the solid phase of the articular cartilage was investigated. The model represented different radial clearances and load magnitudes. The comparison of the finite element predictions and the experimental measurement showed good agreement in the location, size and shape of the contact area, and a similar trend in the relationship between contact area and load was observed. There was, however, a deviation of over 30% in the magnitude of the contact area, which might be due to experimental limitations or to simplifications in the material constitutive relationships used. In comparison with the isotropic solid phase model, the tension-compression solid phase model had better agreement with the experimental observations. The findings provide some confidence that the new biphasic methodology for modelling the cartilage is able to predict the contact mechanics of the hip joint. The validation provides a foundation for future subject-specific studies of the human hip using a biphasic cartilage model
Energy Dependence of the Delta Resonance: Chiral Dynamics in Action
There is an important connection between the low energy theorems of QCD and
the energy dependence of the Delta resonance in pi-N scattering, as well as the
closely related gamma^{*} N -> pi N reaction. The resonance shape is due not
only to the strong pi-N interaction in the p wave but the small interaction in
the s wave; the latter is due to spontaneous chiral symmetry breaking in QCD
(i.e. the Nambu-Goldstone nature of the pion). A brief overview of experimental
tests of chiral perturbation theory and chiral based models is presentedComment: 11 pages, 6 figures, Festschrift for S.N. yan
Semi-local quantum liquids
Gauge/gravity duality applied to strongly interacting systems at finite
density predicts a universal intermediate energy phase to which we refer as a
semi-local quantum liquid. Such a phase is characterized by a finite spatial
correlation length, but an infinite correlation time and associated nontrivial
scaling behavior in the time direction, as well as a nonzero entropy density.
For a holographic system at a nonzero chemical potential, this unstable phase
sets in at an energy scale of order of the chemical potential, and orders at
lower energies into other phases; examples include superconductors and
antiferromagnetic-type states. In this paper we give examples in which it also
orders into Fermi liquids of "heavy" fermions. While the precise nature of the
lower energy state depends on the specific dynamics of the individual system,
we argue that the semi-local quantum liquid emerges universally at intermediate
energies through deconfinement (or equivalently fractionalization). We also
discuss the possible relevance of such a semi-local quantum liquid to heavy
electron systems and the strange metal phase of high temperature cuprate
superconductors.Comment: 31 pages, 7 figure
Semi-Holographic Fermi Liquids
We show that the universal physics of recent holographic non-Fermi liquid
models is captured by a semi-holographic description, in which a dynamical
boundary field is coupled to a strongly coupled conformal sector having a
gravity dual. This allows various generalizations, such as a dynamical exponent
and lattice and impurity effects. We examine possible relevant deformations,
including multi-trace terms and spin-orbit effects. We discuss the matching
onto the UV theory of the earlier work, and an alternate description in which
the boundary field is integrated out.Comment: 26 pages, 4 figures; v2: typos corrected and report number adde
Powerlaw optical conductivity with a constant phase angle in high Tc superconductors
In certain materials with strong electron correlations a quantum phase
transition (QPT) at zero temperature can occur, in the proximity of which a
quantum critical state of matter has been anticipated. This possibility has
recently attracted much attention because the response of such a state of
matter is expected to follow universal patterns defined by the quantum
mechanical nature of the fluctuations. Forementioned universality manifests
itself through power-law behaviours of the response functions. Candidates are
found both in heavy fermion systems and in the cuprate high Tc superconductors.
Although there are indications for quantum criticality in the cuprate
superconductors, the reality and the physical nature of such a QPT are still
under debate. Here we identify a universal behaviour of the phase angle of the
frequency dependent conductivity that is characteristic of the quantum critical
region. We demonstrate that the experimentally measured phase angle agrees
precisely with the exponent of the optical conductivity. This points towards a
QPT in the cuprates close to optimal doping, although of an unconventional
kind.Comment: pdf format, 9 pages, 4 color figures include
Emplacement of inflated Pāhoehoe flows in the Naude’s Nek Pass, Lesotho remnant, Karoo continental flood basalt province: use of flow-lobe tumuli in understanding flood basalt emplacement
Physical volcanological features are presented for a 710-m-thick section, of the Naude’s Nek Pass, within the lower part of the Lesotho remnant of the Karoo Large Igneous Province. The section consists of inflated pāhoehoe lava with thin, impersistent sedimentary interbeds towards the base. There are seven discreet packages of compound and hummocky pāhoehoe lobes containing flow-lobe tumuli, making up approximately 50% of the section. Approximately 45% of the sequence consists of 14 sheet lobes, between 10 and 52-m-thick. The majority of the sheet lobes are in two packages indicating prolonged periods of lava supply capable of producing thick sheet lobes. The other sheet lobes are as individual lobes or pairs, within compound flows, suggesting brief increases in lava supply rate. We suggest, contrary to current belief, that there is no evidence that compound flows are proximal to source and sheet lobes (simple flows) are distal to source and we propose that the presence of flow-lobe tumuli in compound flows could be an indicator that a flow is distal to source. We use detailed, previously published, studies of the Thakurvadi Formation (Deccan Traps) as an example. We show that the length of a lobe and therefore the sections that are ‘medial or distal to source’ are specific to each individual lobe and are dependent on the lava supply of each eruptive event, and as such flow lobe tumuli can be used as an indicator of relative distance from source
- …
