141 research outputs found
Preparation of Nickel-Copper Bilayers Coated on Single-Walled Carbon Nanotubes
Due to oxidizability of copper coating on carbon nanotubes, the interfacial bond strength between copper coating and its matrix is weak, which leads to the reduction of the macroscopic properties of copper matrix composite. The electroless coating technics was applied to prepare nickel-copper bilayers coated on single-walled carbon nanotubes. The coated single-walled carbon nanotubes were characterized through transmission electron microscope spectroscopy, field-emission electron microscope spectroscopy, X-ray diffractometry, and thermogravimetric analysis. The results demonstrated that the nickel-copper bilayers coated on single-walled carbon nanotubes possessed higher purity of unoxidized copper fine-grains than copper monolayers
Production, purification and characterization of polyclonal antibody against the truncated gK of the duck enteritis virus
Duck virus enteritis (DVE) is an acute, contagious herpesvirus infection of ducks, geese, and swans, which has produced significant economic losses in domestic and wild waterfowl. With the purpose of decreasing economic losses in the commercial duck industry, studying the unknown glycoprotein K (gK) of DEV may be a new method for preferably preventing and curing this disease. So this is the first time to product and purify the rabbit anti-tgK polyclonal antibody. Through the western blot and ELISA assay, the truncated glycoprotein K (tgK) has good antigenicity, also the antibody possesses high specificity and affinity. Meanwhile the rabbit anti-tgK polyclonal antibody has the potential to produce subunit vaccines and the functions of neutralizing DEV and anti-DEV infection because of its neutralization titer. Indirect immunofluorescent microscopy using the purified rabbit anti-tgK polyclonal antibody as diagnostic antibody was susceptive to detect a small quantity of antigen in tissues or cells. This approach also provides effective experimental technology for epidemiological investigation and retrospective diagnose of the preservative paraffin blocks
Expression and characterization of duck enteritis virus gI gene
<p>Abstract</p> <p>Background</p> <p>At present, alphaherpesviruses gI gene and its encoding protein have been extensively studied. It is likely that gI protein and its homolog play similar roles in virions direct cell-to-cell spread of alphaherpesviruses. But, little is known about the characteristics of DEV gI gene. In this study, we expressed and presented the basic properties of the DEV gI protein.</p> <p>Results</p> <p>The special 1221-bp fragment containing complete open reading frame(ORF) of duck enteritis virus(DEV) gI gene was extracted from plasmid pMD18-T-gI, and then cloned into prokaryotic expression vector pET-32a(+), resulting in pET-32a(+)-gI. After being confirmed by PCR, restriction endonuclease digestion and sequencing, pET-32a(+)-gI was transformed into <it>E.coli </it>BL21(DE3) competent cells for overexpression. DEV gI gene was successfully expressed by the addition of isopropyl-β-D-thiogalactopyranoside(IPTG). SDS-PAGE showed that the recombinant protein His6-tagged gI molecular weight was about 61 kDa. Subsequently, the expressed product was applied to generate specific antibody against gI protein. The specificity of the rabbit immuneserum was confirmed by its ability to react with the recombinant protein His6-tagged gI. In addition, real time-PCR was used to determine the the levels of the mRNA transcripts of gI gene, the results showed that the DEV gI gene was transcribed most abundantly during the late phase of infection. Furthermore, indirect immunofluorescence(IIF) was established to study the gI protein expression and localization in DEV-infected duck embryo fibroblasts (DEFs), the results confirmed that the protein was expressed and located in the cytoplasm of the infected cells, intensively.</p> <p>Conclusions</p> <p>The recombinant prokaryotic expression vector of DEV gI gene was constructed successfully. The gI protein was successfully expressed by <it>E.coli </it>BL21(DE3) and maintained its antigenicity very well. The basic information of the transcription and intracellular localization of gI gene were presented, that would be helpful to assess the possible role of DEV gI gene. The research will provide useful clues for further functional analysis of DEV gI gene.</p
Asynchronous variation in the Quaternary East Asian winter monsoon associated with the tropical Pacific ENSO‐like system
Quaternary East Asian winter monsoon (EAWM) evolution has long been attributed to high-latitude Northern Hemisphere climate change. However, it cannot explain the distinct relationships of the EAWM in the northern and southern East Asian marginal sea in paleoclimatic records. Here we present an EAWM record of the northern East China Sea over the past 300 ka and a transient climate simulation with the Kiel Climate Model through the Holocene. Both proxy record and simulation suggest anticorrelated long-term EAWM evolution between the northern East China Sea and the South China Sea. We suggest that this spatial discrepancy of EAWM can be interpreted as El Niño–Southern Oscillation (ENSO)-like controlling, which generates cyclonic/anticyclonic wind anomalies in the northern/southern East Asian marginal sea. This research explains much of the controversy in nonorbital scale variability of Quaternary EAWM records in the East Asian marginal sea and supports a potent role of tropical forcing in East Asian winter climate change
Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP
A high-resolution fire history in the Yangtze River Basin over the past 7.0 ka BP is reconstructed based on the proxy of black carbon of sediment core ECMZ on the continental shelf of the East China Sea in order to reveal the interactions among fire, climate, vegetation and human activity on a regional scale. A comparison of fire activity with climatic and vegetation proxies suggests that changes in fire activity prior to 3.0 ka BP on both millennial- and centennial-timescales were closely related to variations in temperature and precipitation, with more fire during warm and humid periods, suggesting climatic control on regional fire activities. In contrast, the significant decoupling between fire and climate on multi-timescales since similar to 3.0 ka BP implies increasing anthropogenic impact on regional fire activity. There is also a distinct response of fire activity to human disturbance at different time scales. Long-term reduction in regional fire activity since similar to 3.0 ka BP was caused by a general decrease in forest cover with increasing human activity while short-term (centennial-timescale) enhancement in biomass burning usually coincides with periods characterized by increasing human activity associated with population migration or technological advances. (C) 2020 Elsevier Ltd. All rights reserved
A proposed disease classification system for duck viral hepatitis
The nomenclature of duck viral hepatitis (DVH) was historically not a problem. However, 14 hepatotropic viruses among 10 different genera are associated with the same disease name, DVH. Therefore, the disease name increasingly lacks clarity and may no longer fit the scientific description of the disease. Because one disease should not be attributed to 10 genera of viruses, this almost certainly causes misunderstanding regarding the disease-virus relationship. Herein, we revisited the problem and proposed an update to DVH disease classification. This classification is based on the nomenclature of human viral hepatitis and the key principle of Koch's postulates (“one microbe and one disease”). In total, 10 types of disease names have been proposed. These names were literately matched with hepatitis-related viruses. We envision that this intuitive nomenclature system will facilitate scientific communication and consistent interpretation in this field, especially in the Asian veterinary community, where these diseases are most commonly reported
Distinct control mechanism of fine-grained sediments from Yellow River and Kyushu supply in the northern Okinawa Trough since the last glacial
© 2017. American Geophysical Union. All Rights Reserved. High-resolution multiproxy records, including clay minerals and Sr-Nd-Pb isotopes of the clay-sized silicate fraction of sediments from IODP Site U1429 in the northern Okinawa Trough, provide reliable evidence for distinct control mechanism on fine-grained sediments input from the Yellow River and the southern Japanese Islands to the northern Okinawa Trough since 34 ka BP. Provenance analysis indicates that the sediments were mainly derived from the Yellow River and the island of Kyushu. Since the last glacial, clay-sized sediments transported from the Yellow River to the study site were strongly influenced by sea-level fluctuation. During low sea-level stage (∼34–14 ka BP), the paleo-Yellow River mouth was positioned closer to the northern Okinawa Trough, favoring large fluvial discharge or even direct input of detrital sediments, which resulted about four times more flux of clay-sized sediments supply to the study area as during the relatively high sea-level stage (∼14–0 ka BP). The input of Kyushu-derived clay-sized sediments to the study site was mainly controlled by the Kuroshio Current and Tsushima Warm Current intensity, with increased input in phase with weakened Kuroshio Current/Tsushima Warm Current. Our study suggests that the Kuroshio Current was very likely flowed into the Okinawa Trough and thus influenced the fine-grained sediment transport in the area throughout the last glacial and deglacial. During ∼34–11 ka BP, the Kyushu clay-sized sediment input was mainly controlled by the Kuroshio Current. Since ∼11 ka BP, the occurrence of Tsushima Warm Current became important in influencing the Kyushu fine-grained sediment input to the northern Okinawa Trough
Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes
The radiogenic strontium (Sr) and neodymium (Nd) isotope compositions of the detrital fraction of surface and subsurface sediments have been determined to trace sediment provenance and contributions from Asian dust off the east coast of Luzon Islands in the western Philippine Sea. The Sr and Nd isotope compositions have been very homogenous near the east coast of the Luzon Islands during the latest Quaternary yielding relatively least radiogenic Sr (87Sr/86Sr = 0.70453 to 0.70491) and more radiogenic Nd isotope compositions (εNd(0) = +5.3 to +5.5). These isotope compositions are similar to Luzon rocks and show that these sediments were mainly derived from the Luzon Islands. In contrast, the Sr and Nd isotope compositions of sediments on the Benham Rise and in the Philippine Basin are markedly different in that they are characterized by overall more variable and more radiogenic Sr isotope compositions (87Sr/86Sr = 0.70452 to 0.70723) and less radiogenic Nd isotope compositions (εNd(0) = −5.3 to +2.4). The Sr isotope composition in the Huatung Basin is intermediate between those of the east coast of Luzon and Benham Rise, but shows the least radiogenic Nd isotope compositions. The data are consistent with a two end-member mixing relationship between Luzon volcanic rocks and eolian dust from the Asian continent, which is characterized by highly radiogenic Sr and unradiogenic Nd isotope compositions. The results show that Asian continental dust contributes about 10–50% of the detrital fraction of the sediments on Benham Rise in the western Philippine Sea, which offers the potentials to reconstruct the climatic evolution of eastern Asia from these sediments and compare this information to the records from the central and northern Pacific
Impacts of Duck-Origin Parvovirus Infection on Cherry Valley Ducklings From the Perspective of Gut Microbiota
Duck-origin goose parvovirus (D-GPV) is the causative agent of beak atrophy and dwarfism syndrome (BADS), characterized by growth retardation, skeletal dysplasia, and persistent diarrhea. However, the pathogenic mechanism of D-GPV remains undefined. Here, we first reported the gut microbiome diversity of D-GPV infected Cherry Valley ducks. In the investigation for the influence of D-GPV infection on gut microbiota through a period of infection, we found that D-GPV infection caused gut microbiota dysbiosis by reducing the prevalence of the dominant genera and decreasing microbial diversity. Furthermore, exfoliation of the intestinal epithelium, proliferation of lymphocytes, up-regulated mRNA expression of pro-inflammatory TNF-α, IL-1β, IL-6, IL-17A, and IL-22 and down-regulated mRNA expression of anti-inflammatory IL-10 and IL-4 occurred when D-GPV targeted in cecal epithelium. In addition, the content of short chain fatty acids (SCFAs) in cecal contents was significantly reduced after D-GPV infection. Importantly, the disorder of pro-inflammatory and anti-inflammatory cytokines was associated with the decrease of SCFAs-producing bacteria and the enrichment of opportunistic pathogens. Collectively, the decrease of SCFAs and the enrichment of pathogen-containing gut communities promoted intestinal inflammatory injury. These results may provide a new insight that target the gut microbiota to understand the progression of BADS disease and to research the pathogenic mechanism of D-GPV
- …