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Duck-origin goose parvovirus (D-GPV) is the causative agent of beak atrophy and
dwarfism syndrome (BADS), characterized by growth retardation, skeletal dysplasia,
and persistent diarrhea. However, the pathogenic mechanism of D-GPV remains
undefined. Here, we first reported the gut microbiome diversity of D-GPV infected
Cherry Valley ducks. In the investigation for the influence of D-GPV infection on gut
microbiota through a period of infection, we found that D-GPV infection caused gut
microbiota dysbiosis by reducing the prevalence of the dominant genera and decreasing
microbial diversity. Furthermore, exfoliation of the intestinal epithelium, proliferation of
lymphocytes, up-regulated mRNA expression of pro-inflammatory TNF-α, IL-1β, IL-6,
IL-17A, and IL-22 and down-regulated mRNA expression of anti-inflammatory IL-10
and IL-4 occurred when D-GPV targeted in cecal epithelium. In addition, the content of
short chain fatty acids (SCFAs) in cecal contents was significantly reduced after D-GPV
infection. Importantly, the disorder of pro-inflammatory and anti-inflammatory cytokines
was associated with the decrease of SCFAs-producing bacteria and the enrichment
of opportunistic pathogens. Collectively, the decrease of SCFAs and the enrichment of
pathogen-containing gut communities promoted intestinal inflammatory injury. These
results may provide a new insight that target the gut microbiota to understand the
progression of BADS disease and to research the pathogenic mechanism of D-GPV.

Keywords: D-GPV, BADS, gut microbiota dysbiosis, intestinal inflammation, SCFAs

INTRODUCTION

The diverse array of host characteristics can be influenced by the gut microbiota, including
nutrition and metabolism, innate and adaptive immunity, mucus composition, proliferation
and differentiation of enterocyte, and resistance to pathogen colonization (Hooper et al., 2012;
Tremaroli and Bäckhed, 2012; Kim et al., 2016). There are several billions of bacteria, including
pathogenic and non-pathogenic species, the commensal and the opportunistic bacteria, present in
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poultry intestines where is one of the primary sites of exposure
to pathogens (Adegunloye, 2006). The commensal bacteria could
cause pathology after translocation through the mucosa or under
the condition of immunodeficiency, even though most of the
bacteria are symbiotic (Marchetti et al., 2008; Glavan et al., 2016).
Significant shifts in the microbiota are one of the characteristics
of acute mucosal infections, a phenomenon known as dysbiosis
(Spor et al., 2011). Furthermore, the infections of gastrointestinal
tract can also promote expansion of commensal bacteria with
pro-inflammatory potential which can directly exacerbate the
pathological process (Egan et al., 2011). Thus, infections can
threaten the homeostatic relationship between the host and its
gut microbiota in this highly reactive environment. Considering
the potential relationships between the gut microbiota and viral
infection (Wilks and Golovkina, 2012; Lynch, 2014) and the
vital roles of the gut microbiota in regulating the immunity and
inflammatory disease (Nobuhiko et al., 2013; Sun et al., 2015).
It is vitally important to understand how the composition of the
gut microbiota alters as a consequence of Duck-origin Parvovirus
(D-GPV) infection and the meanings of these alterations on the
pathogenic mechanism of pathogen.

Duck-origin Parvovirus, a novel Goose Parvovirus, is the
pathogen of the beak atrophy and dwarfism syndrome (BADS),
and has been emerging as a severe threat to the health of duck
flocks since 2015 in China (Chen et al., 2015). D-GPV was
highly pathogenic to mule ducks and Cherry Valley ducks, and all
experimentally infected ducks exhibited atrophic beak, projecting
tongue, remarkable growth retardation, skeletal dysplasia and
diarrhea similar to naturally infected ducks (Chen H. et al., 2016;
Ning et al., 2018). Due to the significant growth retardation,
BADS has caused great economic losses to China. Here,
we reported an isolate of D-GPV (QH-L01) isolated from Cherry
Valley ducks with BADS, a distinct GPV variant strain, which
was most closely related to SYG26-35 GPV strains (Chen et al.,
2017). Notably, the gastrointestinal abnormalities of diarrhea,
weight loss and malnutrition have been observed in BADS ducks.
However, the reason of gastrointestinal abnormalities symptoms
caused by D-GPV infection is still unclear. Furthermore, there are
currently no researches on how D-GPV affects gut microbiota or
intestinal health.

To date, the influence of D-GPV infection on gut microbiota
of Cherry Valley ducks has not been previously reported. In this
study, the cecal microbiota of Cherry Valley ducks were analyzed
in order to determine whether potential associations exist
between the gut microbiota and gastrointestinal abnormalities
after D-GPV infection in a typical industry growth period. Our
study would provide the initial basis for understanding
the interaction between D-GPV and gut microbiota of
Cherry Valley duck.

MATERIALS AND METHODS

Duck-Origin Parvovirus and
Experimental Animals
The D-GPV strain, QH-L01, was originally isolated from the
liver of the Cherry Valley duckling flock with BADS in Sichuan

province, China (Chen et al., 2017). Forty 2-day-old Cherry
Valley ducklings free of specific maternal antibodies were
obtained from the breeding facility of the Institute of Poultry
Sciences in Sichuan Agricultural University, China. Referring to
our previous study (Chen et al., 2017), the titer of QH-L01 was
calculated at 106.54 EID50/0.2 mL for intramuscular challenge.

Animal Experiments
Forty Cherry Valley ducklings, 2-day-old and free from specific
maternal antibodies, were randomly allocated into infection
group and control group, housed in isolated animal houses
and supplied commercial forage of ducklings (TONGWEI Co.,
Ltd., China) and water ad libitum. The commercial forage
for ducklings mainly included 20% protamine, 3.9% crude
fiber, 1.1% calcium, and 0.5% phosphorus as detailed in
Supplementary Table S1. Twenty ducklings of infection group
were inoculated with D-GPV QH-L01 at 106.54 EID50/0.2 mL
through intramuscular injection at 2 days of age. Twenty
ducklings of control group were inoculated with an equivalent
volume of sterile phosphate buffered saline (PBS). Daily clinical
symptoms and body weight were monitored, and ten ducklings
from infection and control groups were euthanized and autopsied
at 6 and 15 days post infection (dpi) until the experiments were
completed, respectively. Animal experimentation protocols were
approved by the Institutional Animal Care and Use Committee
of Sichuan Agricultural University, following the guidelines on
animal experiments under the permit No.DY-S20164037.

Sample Collection
All infected ducklings were identified as positive infection by
PCR analysis of cloacal swabs as described in our previous
study (Luo et al., 2019). The unilateral caeca (cecal tissue and
contents) of each animal were removed aseptically, and stored
at −80◦C until they were processed for total cecal microbial
DNA analyses. The one-half of another unilateral caeca tissue
and contents were collected and stored at −80◦C for RNA
isolation and the analysis of short-chain fatty acids (SCFAs). The
remaining half of unilateral caeca samples from each ducks was
fixed in 4% paraformaldehyde and embedded in paraffin wax,
then cut into 5 µm thick sections. Sections were stained with
hematoxylin and eosin (H&E) and detected virus antigen with
immunohistochemical (IHC) staining.

Bacterial DNA Isolation
Bacterial DNA was extracted for broad-range amplification and
sequence analysis of bacterial 16S rRNA genes as detailed in
Supplementary Materials. In brief, bacterial DNA was extracted
from cecum and its contents using the Fast DNA SPIN extraction
kits (MP Biomedicals, Santa Ana, CA, United States), following
the manufacturer’s instructions. The quantity and quality of
extracted DNAs were measured using a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States) and agarose gel electrophoresis, respectively.

Bacterial 16S rRNA Gene Sequencing
Bacterial communities of cecal contents and mucosa-adherent
bacteria were determined by Illumina MiSeq sequencing of
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16S rRNA genes V3–V4 region, and the caeca samples were
collected from D-GPV-infected ducks and healthy control ducks
at 6 dpi and 15 dpi, respectively. The bacterial V3–V4 region of
16S rRNA genes was amplified using the forward primer 338F
(5′-ACTCCTACGGGAGGCAGCA-3′) and the reverse primer
806R (5′-GGACTACHVGGGTWTCTAAT-3′). After purifying
the PCR amplicons followed by the quantification of DNA
concentration, amplicons were pooled in equal amounts, and
pair-end 2 × 300bp sequencing was performed using the
Illlumina MiSeq platform with MiSeq Reagent Kit v3 at
Shanghai Personal Biotechnology Co., Ltd (Shanghai, China).
The sequencing data were deposited into the Sequence Read
Archive (SRA) of NCBI (Accession No. SRP182571). The
Quantitative Insights Into Microbial Ecology (QIIME, v1.8.0)
pipeline was employed to process the sequencing data, as
previously described (Caporaso et al., 2010). After quality
filters, the remaining high-quality sequences were clustered into
operational taxonomic units (OTUs) at 97% sequence identity by
UCLUST and as detailed in Supplementary Materials.

Determination of SCFAs in Cecum
The SCFAs of cecal contents were extracted by the method as
described by Baere et al. (2013) with slight modification. Weight
1 g of cecal contents samples were used to dilute at ratio 1:4
to 1:8 (w/v) in sterile distilled water. After vortex mixing for
1 min followed by centrifuge at 5,000× g for 10 min, the SCFAs-
containing supernatant was filtered through cellulose acetate
membrane with a pore size of 0.22 µm. SCFAs analyses were
carried out by using HPLC as described by Hudafaujan et al.
(2010) method.

Immunohistochemical and
Histopathological Analyses
All procedures of IHC staining were performed following
the previously described protocols (Chen et al., 2009). Rabbit
monoclonal antibody against GPV VP3 protein (Beijing Bioss
Biotechnology Co., Ltd., China) was diluted in 1:200, as the
primary antibody. After incubating with the primary antibody
overnight at 4◦C followed by washing three times with PBS,
the sections were incubated with mouse anti-rabbit secondary
antibody (Biotin-Streptavidin HRP Detection Systems, Boster
Biological Technology Co., Ltd., China) for 30 min at 37◦C.
The positive staining cells appeared dark-brown, denoting the
existence of D-GPV antigen, while the negative staining cells were
blue under light microscope (Nikon 80i). Caeca samples of the
proximal ileum were concurrently stained with H&E prior to
catching under a light microscope to assess the histopathology.
Ten complete structures of the villus height and crypt depth of
every sample were measured using Image-Pro Plus 6.0 (Media
Cybernetics, Silver Spring, MD, United States), and the villus
height and crypt depth (V/C) ratios were calculated.

RNA Preparation and
Quantitative RT-PCR
Total RNA was isolated from selected cecum using RNAiso
Plus reagent [Takara Biomedical Technology (Beijing) Co.,

Ltd]. Complementary DNA (cDNA) was synthesized using
PrimeScriptTM RT reagent Kit with gDNA Eraser (Perfect Real
Time) [Takara Biomedical Technology (Beijing) Co., Ltd] in
accordance with the manufacturer’s instructions. Real-time PCR
reactions was performed with final concentrations of 2 × TB
Green Premix DimerEraser [Takara Biomedical Technology
(Beijing) Co., Ltd], and 0.3 µM forward and reverse primers
in 25 µL, using the following conditions: 95◦C for 30 s;
40 cycles of 95◦C (5 s) and 60◦C (30 s) in the Bio-Rad
CFX96 Real-Time Detection System (Bio-Rad, United States).
The PCR products were detected and monitored by direct
measurement of the fluorescence intensity. All measurements
were performed in triplicate.

For analysis, target gene expression of each sample was
normalized to the house-keeping gene, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), following a previously
described protocol (Nair et al., 2011). The 2−11CT method was
used to analyze the results of the qPCR. Sequences of primers
used for qRT-PCR specific for cytokines of ducks, were shown in
Table 1, including pro-inflammatory TNF-α, IL-1β, IL-6, IL-17A,
and IL-22, as well as anti-inflammatory IL-10 and IL-4. Results
were expressed as mean± SEM.

Statistical and Bioinformatics Analysis
The SPSS software package 20.0 (SPSS v. 16, SPSS Inc., Chicago,
IL, United States) was used for the statistical calculations in
this study. After confirming the normal distribution of variables
by the Shapiro–Wilk test, two-tailed Student’s t-test and the
post hoc ANOVA was performed to analyze the variables of
normal distribution, and means were considered significantly
different at a P < 0.05, and summary of P-values for multiple
comparisons are presented as P < 0.01 and P < 0.05. When data
was not normally distributed it was log-transformed.

The QIIME (v1.8.0) and R packages (v3.2.0) were employed
to process the sequence data. OTU-level alpha diversity

TABLE 1 | List of primers used in this study and their sequences.

Product

Gene Primers 5′ -3′ Accession (bp)

GAPDH F:TGCTTGCTGCTCCTCCTCAT GU564233.1 110

R:TGGCTACCACTTGGACTTTGC

TNF-α F:CGTTGACTTGGCTGTCGTGTG AY765397.1 101

R:GTGTTCCACATCTTTCAGAGCATC

IL-1β F:GCTACACCCGCTCACAGTCCTT DQ393268.1 123

R:GCCTCACTTTCTGGCTGGATG

IL-6 F:TCTGGCAACGACGATAAGGC XM_027450925.1 156

R:AATGAAGTAAAGTCTCGGAGGATGA

IL-17A F:ACCCTTCGTGCTTCTCTGTC EU366165.1 155

R: GCATCTTTTTGGGTCAGGCA

IL-22 F: TTCCTGGCATCCCTGACCTC XM_013196285.1 123

R: ATTCTTTCCATTCTCTCCCAACTGT

IL-10 F: GACGGGAAACCCAAGTGACA NM_001310368.1 124

R: CCTTGATGGAGCCCCTCATT

IL-4 F: TGCAGGCAATGAGACAGG MF346730.1 113

R: GCAGCAAGTTGAGGTAGATG
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indices, such as Chao1 richness estimator, ACE metric,
Shannon diversity index, and Simpson index, were calculated
using the OTU table in QIIME (Hughes et al., 2001).
The beta diversity analysis, which utilized UniFrac distance
metrics to investigate the structural variation of microbial
communities across samples, and visualized via principal
coordinate analysis (PCoA) and unweighted pair-group method
with arithmetic means (UPGMA) hierarchical clustering, was
conducted with R software. LEfSe (Linear discriminant analysis
effect size) was performed to detect differentially abundant
taxa across groups using the default parameters. Spearman
rank correlation tests were performed to evaluate associations
between two variables, and P-values were adjusted for false
discovery rate according to Bonferroni and Hochberg procedure
(Benjamini and Hochberg, 1995).

RESULTS

Characteristics of the Samples and
16S rRNA Gene Sequence Data
After quality trimming and chimera detection followed sample
rarefaction, an average of 45,473 high-quality sequences (range
from 47,448 to 54,488) remained. In total, sequences from the
cecal microflora could be classified into 43 genera in control
group of 6 days (C-6d, n = 8), 47 genera in D-GPV infection
group of 6 days (I-6d, n = 9), 60 genera in control group of
15 days (C-15d, n = 10) and 55 genera in D-GPV infection
group of 15 days (I-15d, n = 10), respectively. Basic information
for samples, including accession numbers, sequencing reads,
length distribution statistics of sequence, species accumulation
curves, the number of taxa observed, and rank abundance curve
are reported in Supplementary Table S2 and Supplementary
Figure S1.

D-GPV Infection Reduced the Microbial
Diversity and Altered the Structure of
Community in the Ceca
Multiple alpha diversity metrics of richness and diversity revealed
obvious distinctions among microbial populations at different
post-infection time. At 6 dpi, the sample richness and diversity
showed no significant difference (P > 0.05) between control
group and D-GPV infection group reflected by the abundance
index Ace, Chao, and Simpson. However, a significant decrease
in diversity reflected by the Shannon analyses from D-GPV
infected ducks at 15 dpi (P = 0.042) (Figure 1A). Generally,
the alpha diversity metrics of richness (Chao1 and ACE) and
diversity (Simpson and shannon) in the microbial populations
significantly increased (P < 0.05) with ducks maturing in
the case of uninfected. In contrast, there is no significant
difference between the two infection groups with ducks maturing.
Collectively, these data suggested that the increase of diversity
of the microbial populations was blocked with the extension of
D-GPV infection time.

To uncover relationships based on presence or absence
of bacterial groups as well as their phylogenetic relatedness,

we performed a Principal coordinates (PCoA) analysis of
the samples using the phylogenetic-tree-based Unifrac metric.
In unweighted UniFrac PCoA, each sample represents a point in
multidimensional space based on the composition of the bacterial
population in each sample using PC1, PC2, and PC3 (20.6%,
13.50%, and 8.08%, respectively, of the explained variance), and
closeness of two points in the PCoA denotes similar bacterial
population composition between the samples (Figure 1B). The
samples from 6 dpi were separated from 15 dpi on a distinct
PC1 axis of variation (left to right), and the separation effect
of D-GPV infection groups from control groups on PC3 axis
(bottom to top) was better than that of PC2 axis. The analysis
showed distinct clustering of microbial communities associated
with D-GPV infection and age (or post-infection times), and
suggested the distinction between D-GPV infected and control
ducks of major shift in the composition of cecal microbiota.

Analysis of similarities (ANOSIM) based on unweighted
UniFrac distances for measuring beta-diversity showed that
differences among all pairwise comparisons between different
groups was statistically significant (P < 0.01, AMOVA) (Table 2).
The result of samples from D-GPV infection groups clustered
differently with those from controls was additionally confirmed
by Hierarchical clustering of the samples based on the
unweighted pair group method with arithmetic mean (UPGMA)
using the unweighted UniFrac (Figure 1C).

D-GPV-Associated Alterations in
Cecal Microbiota
Interestingly, the effects of D-GPV infection on gut microbes
varied with growth and development of ducklings. The
Bacteroidetes, Firmicutes, and Proteobacteria were the three
most dominant phyla detected within caecum of both controls
and D-GPV-infection groups (Figure 1C). As noted before,
the diversity and spatial structure of gut microbes changed
with D-GPV infected period and ages, which were confirmed
in microbial composition of phylum level (Figure 2). In the
control groups (C-6d and C-15d), there were no significant
differences in the major phyla of Bacteroidetes, Firmicutes,
and Proteobacteria between 6 dpi and 15 dpi, while the
Actinobacteria (P = 0.004), Tenericutes (P = 0.046) and
Verrucomicrobia (P = 0.049) were enriched from 6 dpi to
15 dpi, which was consistent with the increase of alpha
diversity among control groups. Although there was no difference
in alpha diversity between the two infection groups (I-6d
and I-15d), the increase relative abundance of Actinobacteria
(P < 0.001) existed in the course of infection (from 6 dpi to
15 dpi). When compared with control group, D-GPV infection
significantly increased the relative abundance of Tenericutes
(P = 0.043) at 6 dpi and Actinobacteria (P = 0.011) at
15 dpi, but decreased the relative abundance of Firmicutes
(P = 0.048) at 15 dpi. Furthermore, the colonization of
Verrucomicrobia was observed in control group at 15 dpi,
while there was no Verrucomicrobia in D-GPV infection
group. Therefore, the decreased Shannon index was related
to the decrease of Firmicutes and Verrucomicrobia during
D-GPV infection.
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FIGURE 1 | D-GPV infection reduced the microbial diversity and altered the structure of community in the ceca. (A) Richness and diversity within caecal microbial
from uninfected and D-GPV infected ducks. Values are shown as min to max with the mean value calculated for each groups. Statistical tests were performed using
post hoc ANOVA and ns indicated no significant difference. (B) Principal coordinate analysis of unweighted UniFrac distances. Samples are colored by different
group— Blue, Control-6 days (C-6d, n = 8); Red, D-GPV infection-6 days (I-6d, n = 9); Green, Control-15 days (C-15d, n = 10); Purple, D-GPV infection-15 days
(I-15d, n = 10). Axes are scaled by the percent of variation explained by each principal coordinate. (C) Cluster analysis based on unweighted unifrac distance
UPGMA. In order to examine the global differences in bacterial composition between the D-GPV infected ducks and the controls over time, we calculated distances
between each sample using the unweighted Unifrac. Samples are colored by different group same as (B).
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TABLE 2 | AMOVA p-values of treatment groups (permutations = 999).

C-6d I-6d C-15d

I-6d 0.004

C-15d 0.001 0.001

I-15d 0.001 0.001 0.001

Moreover, consistent with beta diversity, clustering analysis
of the top 68 genera highlighted differences in their distributions
due to D-GPV infection (Figure 3). To identify the specific
bacterial taxa associated with D-GPV infection, the linear
discriminant analysis (LDA) effect size (LEfSe) method was
used to compare the cecal microbiota of healthy controls and
D-GPV-infected ducks. The greatest differences in taxa at 6 dpi
and 15 dpi between the two communities were, respectively,
displayed by the cladogram representative of the structure of
cecal microbiota and the predominant bacteria (Figure 4). Some
bacteria in the cecal samples sharply varied from the genus
classification level. D-GPV infection significantly reduced the
relative abundance of genera Streptococcus, Parabacteroides,
Enterococcus, and Pretococcus (LDA >2) and increased the
relative abundance of genera Anaeroplasma, Eggerthella,
Anaerotruncus, Collinsella, Coprobacillus, and Eubacterium
(LDA >2) compared with control group at 6 dpi (Figures 4A,B).
Additionally, the significant decrease relative abundance of
genera Streptococcus, Parabacteroides, Prevotella, Paraprevotella,
Lactobacillus, Barnesiella, Butyricimonas, Faecalibacterium,
Ruminococcus, Bulleidia, and Akkermansia (LDA >2) and
the significantly increased relative abundance of genera

Campylobacter, Anaerofustis, Anaerotruncus, Holdemania,
and Marcrococcus (LDA >2) were observed in D-GPV
infection group at 15 dpi (Figures 4C,D). These genera
contain opportunistic pathogens exhibited enrichment in
abundance when infected with D-GPV especially during the
early stages of 6 dpi, and there were never detected at high
abundances in control samples (Figure 5). Clearly, the D-GPV
infection was associated with the aberrant composition of the
cecal microbiota, and the effect of D-GPV on the colonization of
gut microorganism was more obvious along with the extension
of infection time.

D-GPV Infection Caused Growth
Retardation and Decreased the
Concentrations of SCFAs
The D-GPV-infected ducklings were obvious stunted growth
(Figure 6A) and severely underweight compared with the control
group (P < 0.01) (Figure 6B). Interestingly, no significant
association between body weight and the relative abundance
of phylum Firmicutes was noted within control and D-GPV
infected samples at 6 dpi (P = 0.188) (Figure 6C), whereas a
trend toward a positive association between body weight and the
relative abundance of phylum Firmicutes was observed at 15 dpi
(P = 0.004) (Figure 6D).

Additionally, lower concentration of SCFAs was detected in
the cecal samples collected from D-GPV-infected ducks by HPLC
method. The acetic acids were significantly lower in D-GPV-
infection groups at both 6 dpi and 15 dpi, furthermore, propionic
acid and butyric acids from infection group were reduced at
15 dpi compared to control groups (Figure 6E).

FIGURE 2 | Comparison of the relative abundance of the Bacteroidetes, Firmicutes, Proteobacteria, Actinobactria, Tenericutes, and Verrucomicrobia phyla within
groups. Values are shown as a fraction of the total bacteria detected within each samples. Lines represent the median value. Statistical tests were performed using
post hoc ANOVA and ns indicated no significant difference.
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FIGURE 3 | Bacterial distribution of the top 50 abundant genus among 37 samples. Double hierarchical dendrogram shows the bacterial distribution. The heatmap
plot depicts the relative percentage of each bacterial genus within each sample. The relative values for bacterial family are indicated by color intensity with the legend
indicated under the heatmap.

D-GPV Infection Destroyed the Mucosal
Epithelium of the Intestine and Promoted
Local Intestinal Inflammation
The distribution of the immunoreactivity for the D-GPV antigen
was confirmed, as determined in paraformaldehyde-fixed,
paraffin-embedded tissue sections by IHC. The D-GPV antigen
was mostly strongly distributed in mucosal epithelium and
glandular epithelial cells. The D-GPV antigen was randomly and
widely distributed on the surface of epithelia at 6 dpi (Figure 7A).
Nevertheless, the antigen was mainly distributed in basal region
and basement membrane of epithelial cells and cells of laminae
propria at 15 dpi (Figure 7B). Positive virus signals were not
detected in control samples (Supplementary Figure S2).

Cecal histopathology analysis showed that necrosis and
abscission of mucosal epithelial cells were observed in the 9/10
of D-GPV infected samples at 6 dpi and 6/10 of D-GPV infected
samples at 15 dpi, as well as 10/10 of infected samples at
6 dpi and 9/10 of infected samples at 15 dpi showed local
lymphocytic infiltration in chorioepithelium and laminae propria
(Figures 7C,D). Importantly, the villus height of D-GPV infected
samples was significantly decreased (P < 0.01) at 6 dpi and
15 dpi, and the crypt depth of D-GPV infected samples was
significantly increased (P < 0.01) at 6 dpi (Figure 7E). The
ratio of villus height/crypt depth was significantly reduced at
15 dpi (P < 0.05) in the ceca of proximal ileum (Figure 7E). The
decreased ratio of height of villus and villus height/crypt depth
reduced the absorptive area of the intestine and the mature cell
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FIGURE 4 | The difference of abundances in taxa between the D-GPV-infected groups and the control groups. (A) Taxonomic cladogram obtained from LEfSe
sequence analysis at 6 dpi. Biomarker taxa are highlighted by colored circles and shaded areas. Each circle’s diameter reflects the abundance of that taxa in the
community. (B) The taxa whose abundance differed between the D-GPV-infected samples (I-6d) and the healthy control samples (C-6d) at 6 dpi. The cutoff value of
≥2.0 used for the linear discriminant analysis (LDA) is shown. (C) Taxonomic cladogram obtained from LEfSe sequence analysis at 15 dpi. (D) The taxa whose
abundance differed between the D-GPV-infected samples (I-15d) and the healthy control samples (C-15d) at 15 dpi.

Frontiers in Microbiology | www.frontiersin.org 8 March 2019 | Volume 10 | Article 624

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00624 March 29, 2019 Time: 13:25 # 9

Luo et al. D-GPV Causes Gut Microbiota Disorder

FIGURE 5 | Relative abundance of Campylobacter, Anaeroplasma, Eggerthella, Anaerotruncus, Holdemania, and Macrococcus in the gut microbiota at different
post infection time. Values are shown as a fraction of the total bacteria detected within each samples. Lines represent the median value. Statistical tests were
performed using post hoc ANOVA and ns indicated no significant difference.

manifold, which suggested that D-GPV weaken the absorbing
ability of ceca.

Additionally, the expansion of pro-inflammatory cytokines
was observed in D-GPV infection group. The mRNA expressions
of pro-inflammatory TNF-α, IL-1β, IL-6, IL-17A, and IL-22 were
significantly up-regulated after D-GPV infection, although the
expression of IL-22 had no significant difference at 15 dpi. While
the mRNA expression of anti-inflammatory IL-10 and IL-4 were
down-regulated at 15 dpi (Figures 8A,B).

Relationships Between Cecal Microbiota
and the Relative Expression of Cytokines
The correlative relationships among pro-inflammatory and
anti-inflammatory cytokine expression and cecal predominant
bacterial populations were evaluated in this study (Figure 9).
The result showed that the pro-inflammatory TNF-α was
significantly and negatively correlated with Streptococcus,
Parabacteroides, Fusobacterium and Peptococcus at 6 dpi
and also negatively correlated with Butyricicoccus at 15 dpi,
while it was significantly and positively correlated with
Campylobacter and Collinsella at 6 dpi as well as Collinsella
and Megamonas at 15 dpi. Expression of pro-inflammatory
IL-1β was significantly and negatively correlated with Collinsella
at 6 dpi. Expression of IL-6 was significantly and negatively
correlated Streptococcus, Enterococcus and Fusobacterium at
6 dpi as well as Ruminococcus and Prevotella at 15 dpi, however,
it was positively associated with Anaeroplasma, Campylobacter
and Collinsella at 6dpi. The pro-inflammatory IL-17A was
negatively associated with Butyricicoccus, Streptococcus and
Fusobacterium while correlated positively with Anaeroplasma
at 6 dpi, as well as the Parabacteroides was significantly and
negatively correlated with the expression of IL-17A at 15 dpi.

The expression of IL-22 correlated negatively with Enterococcus,
Fusobacterium and Peptococcus while positively correlated with
Coprobacillus, Anaeroplasma, and Campylobacter at 6 dpi.
The expression of anti-inflammatory IL-10 correlated positively
with Blautia, Akkermansia, and Butyricimonas while it was
significantly and negatively correlated with Megamonas at 15 dpi.

DISCUSSION

The gut microbiota has profound influences on the normal
structural and functional development of the mucosal immune
system (Hooper et al., 2012). The poultry gut is important to
health, however, little is known about how the complex gut
microbiota are affected during viral infection. This study first
analyzes the effect of D-GPV infection on gut microbiota of
Cherry Valley duck, and provides a new perspective for the study
on the waterfowl infectious diseases.

In this study, the caecum was utilized to analyze the gut
microbiota, for the role in digestion and the overall health of
birds. Based on a preliminary analysis of alpha diversity and
beta diversity, all the diversity metrics of microbial populations
increased significantly as healthy ducks matured. However, the
alpha diversity of the gut microbiota in D-GPV infected ducks
was decreased, and the structure and composition of cecal
microbiota were different from control ducks. The Bacteroidetes,
the Firmicutes, and the Proteobacteria were major bacterial
phyla in cecal microbiota of Cherry Valley ducks, as previously
described in Pekin ducks (Best et al., 2016). The two most
dominant phyla of Firmicutes and Bacteroidetes in different
organisms such as birds or mammals play an important role
in intestinal microbiota metabolism in most studies (Ley et al.,
2008; Kohl, 2012). The Firmicutes, a major phylum in the
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FIGURE 6 | (A) Individual comparison between control duck and infected duck. (B) Body weight of control group and D-GVP infection group (P < 0.01 by two-tailed
Student’s t-test). (C,D) Association between the relative abundance of Firmicutes and body weight of control samples and D-GPV infected samples at 6 dpi and 15
dpi, respectively. Statistical analysis was performed using the Spearman t-test. (E) Effect of D-GPV infection on SCFAs content in caecum. ∗P < 0.05, ∗∗P < 0.01 by
post hoc ANOVA, and ns meant no significant differences.

intestines or feces of many animals, is related to the digestibility
of crude forage (Mohd Shaufi et al., 2015). In our study, the
D-GPV-infected ducklings showed slight weakness, a loss of
appetite, and loose stool excretion. We found that the D-GPV
was mainly targeted in intestinal epithelial cells with necrosis
and abscission of intestinal epithelial cells and lymphocytic
infiltration. Importantly, the shorter intestinal villus and the
increased crypt depth in D-GPV infected samples suggested

intestinal growth retardation. In addition, a significant positive
correlation between body weight and the relative abundance of
Firmicutes was observed at 15 dpi. Therefore, we speculated
that the intestinal injury and the decreased relative abundance
of Firmicutes would inevitably decrease the digestion and
absorption of nutrients, which was an important causation of
growth retardation and diarrhea in Cherry Valley ducks after
D-GPV infection.
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FIGURE 7 | The location of D-GPV antigen and histopathological changes in caecum at 6 dpi and 15 dpi. (A) Positive virus signals were detected on the surface of
epithelium cells and glandular epithelial cells at 6 dpi. (B) Positive virus signals were mainly detected in basal base and basement membrane of cells at 15 dpi. (C,D)
Histological features in the D-GPV infection group (i) and control group (c) are shown with hematoxylin and eosin staining at 6 dpi and 15 dpi. Necrosis and
abscission of mucous epithelial cells are indicated with the black arrow. Proliferation of lymphocytes in laminae propria is indicated with the red arrow. (E) Villus
height, crypt depth and the ration of villus height to crypt depth (V/C) in caeca of proximal ileum. Values were means ± standard deviation of three independent
experiments (∗P < 0.05, ∗∗P < 0.01 by post hoc ANOVA), and ns meant no significant differences.

Interestingly, we demonstrated a significant perturbation in
colonization of SCFAs-producing bacteria during D-GPV
infected Cherry Valley ducks. This perturbation was
characterized by the decreased relative abundance of the
dominance, such as the genus Streptococcus, Faecalibacterium,
Lactobacillus, Enterococcus, Bulleidia, and Ruminococcus in
Firmicutes phylum and the genus Parabacteroides, Prevotella,
and Paraprevotella in Bacteroidetes phylum, accompanying
with a decrease in microbial diversity. Meanwhile, D-GPV
infection obstructed the colonization of some new bacteria
at 15 dpi, for instance, the genus Paraprevotella, Bulleidia,
Akkermansia, Butyricimonas, and Barnesiella (in Supplementary
Figure S3). Thereinto, the genus Streptococcus was a primary

acetic acid producer, and the Lactobacillus, Enterococcus, and
Parabacteroide were one of the lactic acid and propionic acid
producing bacteria, while the genera Butyricimonas, Prevotella,
Ruminococcus, and Faecalibacterium were the major butyric acids
producing bacteria. The decreased content of SCFAs was also
found in D-GPV infected samples. Accordingly, we speculated
that the reduction of SCFAs might be linked to the alterations
of SCFAs-producing bacteria in cecal microbiota, which were
important members of the endogenous bacteria playing an
anti-inflammatory role in intestinal tract (Ménard et al., 2004;
Fedorova and Danilenko, 2014; Nicholas and Rudensky, 2014).
The interaction of SCFAs and G-protein-coupled receptors
(GPR) is one of the important signal between gut microbiota and
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FIGURE 8 | Quantitative RT-PCR analysis of the expression of pro-inflammatory TNF-α, IL-1β, IL-6, IL-17A, and IL-22, as well as anti-inflammatory IL-10 and IL-4 in
the caecum from control and D-GPV infection groups at 6 dpi (A) and 15 dpi (B).

FIGURE 9 | Correlogram showing Spearman’s correlations between bacterial genera and cytokine responses in the caecum. Heatmap representing positive (blue
shading) and negative (red shading) associations between pro-inflammatory TNF-α, IL-1β, IL-6, IL-17A, and IL-22 and anti-inflammatory IL-10 and IL-4. Only the
predominant bacterial genera (relative abundance ≥0.01% in every sample at least one group) for which abundance was significantly associated with inflammatory
cytokines expression are presented; Clustering was performed based on genera associations with the inflammatory cytokines. P-values were adjusted for false
discovery rate according to Bonferroni and Hochberg procedure. An asterisk indicates a significance correlation between the bacterial taxa and the cytokine in a
tissue (∗∗P < 0.01, ∗P < 0.05).
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immune system for regulating the homeostasis and maintaining
the balance between immune tolerance to commensals bacteria
and immunity to pathogens (Kim et al., 2016). There is now
sufficient evidence to indicate that SCFAs play an important
role in the maintenance of health and the development of
disease. It has been reported that SCFAs can enhance the
host defenses against pathogens by activating the G-protein-
coupled receptors (GPR) to mediate Regulatory T cell (Tregs)
development and induce T helper differentiation (Arpaia et al.,
2013; Smith et al., 2013). In addition, SCFAs such as butyrate
and propionate suppress the activation of nuclear factor-kappaB
(NF-κB) via GPR109A or GPR43 receptors to modulate the
gene expression of inflammatory cytokines and suppress gut
inflammation (Inan et al., 2000; Singh et al., 2014). Therefore,
the decreases of SCFAs and SCFAs-producing bacteria could
promote intestinal inflammatory injury in the process of
D-GPV infection.

In addition, some opportunistic pathogens increased in
abundance as the disease progressed, including the genera
Campylobacter, Anaerofustis, Anaeroplasma, Eggerthella, Anaero-
truncus, Holdemania, Macrococcus, Coprobacillus, Collinsella,
and Eubacterium present within D-GPV infected ducks especially
during the early stages of 6 dpi. Thereinto, the enrichment
of Coriobacteriaceae, Coprobacillus, and Mogibacteriaceae have
been reported in colorectal cancer of human (Chen et al.,
2012; Gao et al., 2014). Furthermore, the genus Campylobacter
and Eggerthella were reported to be associated with intestinal
inflammation (Spiller et al., 2000; Lau et al., 2004). It was
indicative to determine whether the increased abundance of
D-GPV infection-related genera could serve as a predisposing
cause of gastrointestinal abnormalities symptoms and threat
to the health of host. Infiltration of inflammatory cells in
multiple organs and decrease of lymphocytes in immune organs
have been both reported in D-GPV-infected Cherry valley
ducks and mule ducks (Chen H. et al., 2016; Liu et al.,
2018). The expansion of the pro-inflammatory cytokines TNF-α,
IL-1β, IL-6, IL-17A, and IL-22 is important for the immune
responses of infectious individuals (Neurath, 2015; Mcdermott
et al., 2016). Furthermore, IL-17A participates in the primary
responses to fungi and also bacterial infections and induction
of the pro-inflammatory based diseases (Douzandeh-Mobarrez
and Kariminik, 2017). TNF-α, IL-1β, IL-6, IL-17A, and IL-22,
as the most important pro-inflammatory cytokines, were largely
up-regulated in our experimental process of D-GPV infection
which played an important role to induce inflammation and the
recruitment of leukocytes.

In the correlation analyses, the abundance of SCFAs-
producing bacteria such as Streptococcus, Parabacteroides,
Enterococcus, Fusobacterium and Peptococcus were negatively
associated with the pro-inflammatory TNF-α, IL-6, IL-17A,
and IL-22, in particularly, the anti-inflammatory IL-10 was
positively related with some butyric acid producing bacteria
such as Blautia and Butyricimonas at 15 dpi. Nevertheless, the
opportunistic pathogens such as Anaeroplasma, Campylobacter
and Collinsella were positively associated with TNF-α, IL-6,
IL-17A, and IL-22. Interestingly, it appears that altered
population of gut microbiota can be associated with pathologic
expression of inflammatory factor. For example, Kamiya et al.

revealed that oral administration of SCFAs-producing bacteria
(Lactobacillus bulgaricus and Streptococcus thermophiles) results
in up-regulation of IL-17A by the Peyer’s patches resident T
lymphocytes (Kamiya et al., 2016). Chen J. et al. (2016) also
showed the abundance of Collinsella is associated with pathologic
expression of IL-17A and deterioration of rheumatoid arthritis.
Furthermore, the high levels of Campylobacter jejuni leads
to alteration in gut microbiota population and expression of
IL-17A, IL-22, and TNF-α in pathologic format (Heimesaat
et al., 2016; Rodrigues et al., 2018). A feature of IBD-
ulcerative colitis and Crohn’s disease was a change in ’healthy’
microbiota such as Bifidobacterium and Bacteriodes, and a
concurrent reduction in SCFAs (Hudafaujan et al., 2010;
Chaysavanh et al., 2012). Accordingly, the increase of pro-
inflammatory cytokines and decrease of anti-inflammatory
cytokines were associated with the decrease of SCFAs-producing
bacteria and the enrichment of opportunistic pathogens which
could promote the development of intestinal inflammation in
D-GPV infection.

The effect on the gut microbiome have been reported
in some immunosuppressive virus, such as HIV in human
(Lozupone et al., 2013), Marek’s disease virus (MDV) in chicken
(Perumbakkam et al., 2014) and canine distemper virus (CDV)
in giant panda (Zhao et al., 2017). CD4+ lymphocytes have
been reported to help regulate the growth of bacteria within
the gut microbiome (Slack et al., 2009). Although the decreased
activity of CD4+ lymphocytes is one of the cause of affecting gut
microbiota composition and diversity, the function of dendritic
cells in using MHC-II to present antigens to activate T cells
for sampling gut microbes is mentionable to recognition and
regulation of gut microbes (Farache et al., 2013; Bolnick et al.,
2015). It is essential in regulating the gut microbiota that adaptive
cellular immunity has the ability to modulate flexible responses to
host-specific microbial communities by inducing inflammatory
immune attacks or tolerance via anti-inflammatory pathways
(Sun et al., 2015). It is reported that MHC are associated with
GPV infection, and MHC gene is the susceptible gene to GPV
(Zhu et al., 2015). To some extent, the alterations of the gut
microbiota support the statement that the immune system has
a pivotal role in shaping the composition of gut microbiota.
Nevertheless, there is no clear evidence that whether D-GPV
infection alters the gut microbiota through the suppressing
activity of CD4+ lymphocytes or regulating the gene expression
of MHC-II. Therefore, the interaction between intestinal mucosal
immune response and gut microbiota during D-GPV infection
needs further investigation.

CONCLUSION

In conclusion, the present study provides a new insight for
dysbiosis caused by waterfowl parvovirus on the host gut
microbiome. D-GPV targeted intestinal epithelial cells and
caused the dysbiosis in gut microbiota accompanying with
decrease in the content of short chain fatty acids in ceca.
Moreover, the results show a correlation among the deletion
of some specific SCFAs-producing bacteria, the enrichment of
opportunistic pathogens and intestinal inflammatory injury in
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D-GPV infection. This research sheds light into the correlative
new field in the mechanism of D-GPV and a theoretical basis for
dysbiosis of this disease.
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