4 research outputs found

    Pyrethroid Susceptibility in <i>Stomoxys calcitrans</i> and <i>Stomoxys indicus</i> (Diptera: Muscidae) Collected from Cattle Farms in Southern Thailand

    No full text
    The susceptibility to six pyrethroid insecticides (permethrin, deltamethrin, alpha-cypermethrin, cypermethrin, lambda-cyhalothrin, and bifenthrin), each at the recommended concentration, was evaluated for two stable fly species—Stomoxys calcitrans (Linnaeus, 1758) and Stomoxys indicus Picard, 1908 (Diptera: Muscidae)—through tarsal contact using a World Health Organization (WHO) cone bioassay procedure. The field populations of S. calcitrans were collected from the Songkhla and Phattalung provinces, while S. indicus were collected from the Phattalung and Satun provinces in Thailand. The stable flies were exposed to insecticide-treated filter paper for 30 min, and their knockdown counts at 30 min and 60 min and mortality counts at 12 h and 24 h were recorded. The S. calcitrans and S. indicus Songkhla and Phattalung populations were moderately susceptible to pyrethroids, as indicated by the 24 h mortality. Nonetheless, the Satun population of S. indicus was completely susceptible to permethrin, with 100% mortality, and showed the lowest susceptibility to deltamethrin and bifenthrin. The results indicate the generally low susceptibility of stable flies to pyrethroids in the southern provinces of Thailand

    Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand

    Get PDF
    Background: Members of theAnopheles hyrcanusgroup have been incriminated as important malaria vectors. This study aims to identify the species and explore the insecticide susceptibility profile within the Anopheles hyrcanus group in Ubon Ratchathani Province, northeastern Thailand where increasing numbers of malaria cases were reported in 2014. Methods: Between 2013 and 2015, five rounds of mosquito collections were conducted using human landing and cattle bait techniques during both the rainy and dry seasons. Anopheles mosquitoes were morphologically identified and their insecticide susceptibility status was investigated. Synergist bioassays were carried out with An. hyrcanus (s.l.) due to their resistance to all insecticides. An ITS2-PCR assay was conducted to identify to species the Hyrcanus group specimens. Results: Out of 10,361 Anopheles females collected, representing 18 taxa in 2 subgenera, 71.8% were morphologically identified as belonging to the Hyrcanus Group (subgenus Anopheles), followed by An. barbirostris group (7.9%), An. nivipes (6.5%), An. philippinensis (5.9%) and the other 14 Anopheles species. Specimens of the Hyrcanus Group were more prevalent during the rainy season and were found to be highly zoophilic. Anopheles hyrcanus (s.l.) was active throughout the night, with an early peak of activity between 18:00 h and 21:00 h. ITS2-PCR assay conducted on 603 DNA samples from specimens within the Hyrcanus Group showed the presence of five sisters species. Anopheles peditaeniatus was the most abundant species (90.5%,n= 546), followed by An. nitidus (4.5%,n= 27), An. nigerrimus (4.3%,n= 26), An. argyropus (0.5%,n= 3), and An. sinensis (0.2%,n= 1). All An. hyrcanus (s.l.) specimens that were found resistant to insecticides (deltamethrin 0.05%, permethrin 0.75% and DDT 4% and synergist tests) belonged to An. peditaeniatus. The degree of resistance in An. peditaeniatus to each of these three insecticides was approximately 50%. Addition of PBO (Piperonyl butoxide), but not DEF (S.S.S-tributyl phosphotritioate), seemed to restore susceptibility, indicating a potential role of oxidases as a detoxifying enzyme resistance mechanism. Conclusions: A better understanding of mosquito diversity related to host preference, biting activity and insecticide resistance status will facilitate the implementation of locally adapted vector control strategies

    Comparing Light—Emitting—Diodes Light Traps for Catching Anopheles Mosquitoes in a Forest Setting, Western Thailand

    No full text
    Light traps are a common method for attracting and collecting arthropods, including disease vectors such as mosquitoes. Various types of traps have been used to monitor mosquitoes in a forest in Western Thailand. In this study, four Light Emitting Diodes (LED) light sources (UV, blue, green, and red) and two fluorescent lights (white and UV) were used to trap nocturnal adult mosquitoes. These traps were used with light alone and not any additional attractant. The experiment was conducted from 18:00 to 06:00 h. on six consecutive nights, every two months, across dry, wet, and cold seasons. All specimens were first identified by morphological features and subsequently confirmed by using PCR. We collected a total of 873 specimens of 31 species in four genera, Anopheles, Aedes, Culex, and Armigeres. Anopheles harrisoni was the predominant species, followed by Aedes albopictus, Culex brevipalpis, Culex nitropunctatus, and Armigeres (Leicesteria) longipalpis. UV fluorescent light was the most effective light source for capturing forest mosquitoes, followed by UV LED, blue LED, green LED, white fluorescent, and red LED. The optimal times for collection were from 21:00 to 03:00 h in the dry season. Our results demonstrate that appropriate sampling times and light sources should be selected for optimal efficiency in vector surveillance programs
    corecore