24 research outputs found

    New System for the Acceleration of the Airflow in Wind Turbines

    Get PDF
    Background: This patent is based on the wind industry technology called Diffuser Augmented Wind Turbines (DAWTs). This technology consists of a horizontal axis wind turbine, which is housed inside a duct with diverging section in the direction of the free air stream. In this paper, a review of preceding patents related to this technology is carried out. Objective: This paper presents an innovative patent to improve the performance of horizontal axis wind turbines. In particular, this system is aimed at improving the performance of those turbines that otherwise might not be installed due to the low wind resource existing at certain locations. Methods: The most innovative elements of this patent are: (1) the semi-spherical grooves, which are mechanized on the surface of the two diffusers in order to guarantee a more energetic boundary layer; (2) the coaxial diffuser, which is located downwind following the first diffuser in order to increase the suction effect on the air mass close to the inlet; (3) the coaxial rings located around the first diffuser outlet, which are used to deflect the external airflow toward the turbine wake; and (4), the selforientating system to orientate the system by the prevailing wind direction. Results: An application of the patent for increasing the power generated by a horizontal axis wind turbine with three blades is presented. The patent is designed and its performance is evaluated by using a Computational Fluid Dynamics code. The numerical results show that this system rises the airflow going through the rotor of the turbine. Conclusion: The patented device is an original contribution aimed at enabling a more profitable installation of wind turbines in places where the wind resource is insufficient because of the wind shear caused both by the proximity of the earth and the obstacles on the earth surface.This work was supported by the OASIS Research Project that was cofinanced by CDTI (Spanish Science and Innovation Ministry) and developed with the Spanish companies: Iridium, OHL Concesiones, Abertis, Sice, Indra, Dragados, OHL, Geocisa, GMV, Asfaltos Augusta, Hidrofersa, Eipsa, PyG, CPS, AEC and Torre de Comares Arquitectos S.L and 16 research centres. The authors also acknowledge the partial funding with FEDER funds under the Research Project FC-15-GRUPIN14-004. Finally, we also thank Swanson Analysis Inc. for the use of ANSYS University Research programs as well as the Workbench simulation environment

    Development of an actuator line model for simulation of floating offshore wind turbines

    No full text
    This study focuses on developing and applying an actuator line model (ALM) to predict the wake behind floating offshore wind turbines (FOWTs). A computational method is presented which implements an ALM, able to handle 6 Degree-of-Freedom (DOF) motion dynamics, coupled with a CFD solver. Computational grides used are cubic and do not require a boundary layer mesh. Results show that just about 300k grids are necessary for performance assessment of the NREL Phase VI case. Therefore, the proposed method leads to significantly lower computational cost and easier preprocessing compared to highorder methods used for solving RANS. On the other hand, coupled aerodynamic and motion analyses showed that pitch and surge motions have the most considerable influence on turbine performance due to their inherent effect on 3D local wind inclination in the relative frame. The peak power happened when the platform is in its initial position, where the platform motion velocity is maximum. Finally, it is shown that the wind turbine movement has a considerable effect on its wake characteristics. The gap distances between wake rings can also change wake interactions, and, for the case with platform pitch motion, the condition of the wake is even more complicated as such distance is not the same in all azimuthal sectors. The results show that the applied ALM method is beneficial for simulating the wake behind offshore wind turbines and the complex phenomena in the wake due to platform oscillation

    Effects of the ring clearance on the aerodynamic performance of a CO2 centrifugal compressors annular seal: A numerical study

    No full text
    Computational fluid dynamics simulations are performed on a floating-ring annular seal of a Carbon Dioxide (CO2) centrifugal compressor. The numerical methodology has been validated by comparing the numerical results for the labyrinth function of a stepped-type labyrinth seal with those from experiments. An annular seal of a CO2 compressor is considered and the effects of the rings’ clearances on the seal function are investigated. Results showed that although the leakage rate grows considerably with increasing ring clearance, the leakage function rises marginally with clearance. Furthermore, the leakage function remains almost constant with increasing the inlet total pressure and temperature. Results also showed that the minimum required flow rate of the barrier gas grows substantially with increasing the ring clearance
    corecore