80 research outputs found

    Ecosystemic resilience of a temperate post-fire forest under extreme weather conditions

    Get PDF
    IntroductionThe effects of climate change are exacerbating the fire risk in forests worldwide. Conifer plantations in particular are especially vulnerable to fire outbreaks. At the end of the extraordinarily hot and dry summer of 2018, a forest pine plantation burned in Brandenburg, NE Germany. Different forestry interventions were carried out after the fire, while one area of the damaged plantation remained untouched.MethodsWe investigated the resilience of the forest ecosystem and the effectiveness of different active and passive forest restoration measures during the subsequent relatively warm and dry years 2019–2021.ResultsOne year after the fire, Populus tremula showed strong spontaneous colonization at all sites. In contrast, the majority of planted Pinus sylvestris plantlets died on the plots that had been salvage-logged after the fire. Three years after the fire, Populus tremula successfully established itself as the dominant tree species on all plots, with the highest abundance on the plot where the overstorey of the dead pines was left. Betula pendula, Salix caprea, and Pinus sylvestris showed lower abundance, with their proportion increasing with decreasing cover by dead trees. The distribution of regrowing trees is very heterogeneous across the different treatments and plots. In the clear-cut plots, the extreme microclimatic conditions expose the young trees to additional heat and drought, while the retention of deadwood measurably buffers the temperature and water stress.DiscussionThe resilience and adaptability of naturally regenerating forests that develop into ecosystems that are more diverse seem more promising than restoration through intervention. Apart from hampering restoration under extreme weather conditions, post-fire salvage logging contributes to soil degradation and loss of organic carbon

    The Glial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair

    Get PDF
    The inflammatory response in the injured spinal cord, an immune privileged site, has been mainly associated with the poor prognosis. However, recent data demonstrated that, in fact, some leukocytes, namely monocytes, are pivotal for repair due to their alternative anti-inflammatory phenotype. Given the pro-inflammatory milieu within the traumatized spinal cord, known to skew monocytes towards a classical phenotype, a pertinent question is how parenchymal-invading monocytes acquire resolving properties essential for healing, under such unfavorable conditions. In light of the spatial association between resolving (interleukin (IL)-10 producing) monocytes and the glial scar matrix chondroitin sulfate proteoglycan (CSPG), in this study we examined the mutual relationship between these two components. By inhibiting the de novo production of CSPG following spinal cord injury, we demonstrated that this extracellular matrix, mainly known for its ability to inhibit axonal growth, serves as a critical template skewing the entering monocytes towards the resolving phenotype. In vitro cell culture studies demonstrated that this matrix alone is sufficient to induce such monocyte polarization. Reciprocal conditional ablation of the monocyte-derived macrophages concentrated at the lesion margins, using diphtheria toxin, revealed that these cells have scar matrix-resolving properties. Replenishment of monocytic cell populations to the ablated mice demonstrated that this extracellular remodeling ability of the infiltrating monocytes requires their expression of the matrix-degrading enzyme, matrix metalloproteinase 13 (MMP-13), a property that was found here to be crucial for functional recovery. Altogether, this study demonstrates that the glial scar-matrix, a known obstacle to regeneration, is a critical component skewing the encountering monocytes towards a resolving phenotype. In an apparent feedback loop, monocytes were found to regulate scar resolution. This cross-regulation between the glial scar and monocytes primes the resolution of this interim phase of spinal cord repair, thereby providing a fundamental platform for the dynamic healing response

    The Oxytocin Receptor (OXTR) Contributes to Prosocial Fund Allocations in the Dictator Game and the Social Value Orientations Task

    Get PDF
    Background: Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task. Methodology/Principal Findings: Association (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2–5 locus haplotypes (p,0.05). A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fisher’s exact test). Conclusions: The demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decisio

    Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement–the Mobilise-D study protocol

    Get PDF
    Background: The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. Methods/design: The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson’s Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. Discussion: The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility. Trial registration: ISRCTN12051706

    Diff vs. G

    No full text

    Analysis

    No full text

    Biogeochemical cycling of iron: implications for biocementation and slope stabilisation

    No full text
    Microbial biofilms growing in iron-rich seeps surrounding Lake Violão, Carajás, Brazil serve as a superb natural system to study the role of iron cycling in producing secondary iron cements. These seeps flow across iron duricrusts (referred to as canga in Brazil) into hydraulically restricted lakes in northern Brazil. Canga caps all of the iron ore deposits in Brazil, protecting them from being destroyed by erosion in this active weathering environment. Biofilm samples collected from these seeps demonstrated heightened biogeochemical iron cycling, contributing to the relatively rapid, seasonal formation of iron-rich cements. The seeps support iron-oxidising lineages including Sideroxydans, Gallionella, and an Azoarcus species revealed by 16S rRNA gene sequencing. In contrast, a low relative abundance of putative iron reducers; for example, Geobacter species
    • …
    corecore