502 research outputs found

    POLYCHLORODIBENZODIOXINS (PCDDs), POLYCHLORODIBENZO-FURANS (PCDFs), AND DIOXIN-LIKE POLYCHLOROBIPHENYLS (DL-PCBs) IN MILK, MOZZARELLA CHEESE, WHEY, AND WHEY CHEESE FROM BUFFALOES RAISED IN THE CAMPANIA REGION

    Get PDF
    Dioxins (PCDDs and PCDFs) and PCBs are a group of and toxic organo-chlorinated chemicals comprising hundreds of structurally related compounds (congeners) classified as persistent organic pollutants (POPs). It is acknowledged that 17 PCDD and PCDF congeners are of major concern due to their toxicity; 12 PCB congeners are also recognized to express dioxin-like toxicity and are thereby identified as DL-PCBs. Due to their high persistence and lipophilic nature, dioxins and PCBs tend to accumulate in fat and their bio-accumulation through the food chain may pose the risk of causing adverse effects to human health. For the general population, dietary intake is the most important pathway of exposure to the aforesaid environmental contaminants: meat, milk and dairy products, and fish and other seafood products contribute to total daily intake for more than 90 %. To prevent excessive human exposure to dioxins and DL-PCBs, the European Commission established maximum levels for dioxins and the sum of dioxins and DL-PCBs in an array of food components mainly of animal origin (Regulation EC 1881/2006). In this study, dioxins and DL-PCB concentrations were measured in buffalo milk collected from three impounded Campania farms producing milk with different contamination levels. The fate of contaminants in mozzarella cheese, whey, and whey cheese was also investigated. Analyses were carried out by HRGC-HRMS using US EPA Method 1613. The results of this study show the carry-over of the contamination from milk to its dairy products

    The GAP-TPC

    Full text link
    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiencyComment: 7 pages, 5 figures, Accepted for publication on JINS

    Meson-induced correlations of nucleons in nuclear Compton scattering

    Get PDF
    The non-resonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is dicussed. We found that different form factors appear for the static part (proportional to the enhancement constant κ\kappa ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities.Comment: 15 pages, Latex, epsf.sty, 9 eps figures

    Relativistic Mean Field Model with Generalized Derivative Nucleon-Meson Couplings

    Get PDF
    The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is generalized by introducing couplings of mesons to derivatives of the nucleon field in the Lagrangian density. This approach allows an effective description of a state-dependent in-medium interaction in the mean-field approximation. Various parametrizations for the generalized couplings are developed and applied to infinite nuclear matter. In this approach, scalar and vector self-energies depend on both density and momentum similarly as in the Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much less repulsive at high nucleon energies as compared to standard relativistic mean field models and thus agrees better with experimental findings. The derivative couplings in the extended model have significant effects on properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure

    Density Dependent Hadron Field Theory

    Get PDF
    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in--medium NN interactions and field--theoretical meson--nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson--nucleon vertices on the baryon field operators. As a consequence, the Euler--Lagrange equations lead to baryon rearrangement self--energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy--momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean--field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac--Brueckner calculations with the Bonn NN-potentials are used. Results from Hartree calculations for energy spectra, binding energies and charge density distributions of 16O^{16}O, 40,48Ca^{40,48}Ca and 208Pb^{208}Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultanuous improvement of charge radii, charge densities and binding energies. The results indicate the appearance of a new "Coester line" in the nuclear matter equation of state.Comment: 48 LateX pages, 12 Figures, figures and full paper are available as postscript files by anonymous ftp at ftp://theorie.physik.uni-giessen.de/dd

    Relativistic Brueckner-Hartree-Fock calculations with explicit intermediate negative energy states

    Get PDF
    In a relativistic Brueckner-Hartree-Fock calculation we include explicit negative-energy states in the two-body propagator. This is achieved by using the Gross spectator-equation, modified by medium effects. Qualitatively our results compare well with other RBHF calculations. In some details significant differences occur, e.g, our equation of state is stiffer and the momentum dependence of the self-energy components is stronger than found in a reference calculation without intermediate negative energy states.Comment: 13 pages Revtex, 5 figures included seperatel

    Relativistic Contributions to Deuteron Photodisintegration in the Bethe-Salpeter Formalism

    Get PDF
    In plane wave one-body approximation the reaction of deuteron photodisintegration is considered in the framework of the Bethe-Salpeter formalism for two-nucleon system. Results are obtained for deuteron vertex function, which is the solution of the homogeneous Bethe-Salpeter equation with a multi-rank separable interaction kernel, with a given analytical form. A comparison is presented with predictions of non-relativistic, quasipotential approaches and the equal time approximation. It is shown that important contributions come from the boost in the arguments of the initial state vertex function and the boost on the relative energy in the one-particle propagator due to recoil.Comment: 29 pages, 6 figure

    Kinetics of isothermal and non-isothermal precipitation in an Al-6at%Si alloy

    Get PDF
    A novel theory which describes the progress of a thermally activated reaction under isothermal and linear heating conditions is presented. It incorporates nucleation, growth and impingement and takes account of temperaturedependent solubility. The model generally fits very well to isothermal calorimetry and differential scanning calorimetry data on precipitation in an Al-6 at.% Si alloy. Analysis of the data shows that two processes occur in this precipitation reaction: growth of large Si particles and growth of pre-existing small nuclei. Determination of the sizes of Si precipitates by transmission electron microscopy indicates that interfacial energy contributions are small and have a negligible influence on solubilit

    Density dependent hadron field theory for neutron stars with antikaon condensates

    Get PDF
    We investigate K−K^- and Kˉ0\bar K^0 condensation in β\beta-equilibrated hyperonic matter within a density dependent hadron field theoretical model. In this model, baryon-baryon and (anti)kaon-baryon interactions are mediated by the exchange of mesons. Density dependent meson-baryon coupling constants are obtained from microscopic Dirac Brueckner calculations using Groningen and Bonn A nucleon-nucleon potential. It is found that the threshold of antikaon condensation is not only sensitive to the equation of state but also to antikaon optical potential depth. Only for large values of antikaon optical potential depth, K−K^- condensation sets in even in the presence of negatively charged hyperons. The threshold of Kˉ0\bar K^0 condensation is always reached after K−K^- condensation. Antikaon condensation makes the equation of state softer thus resulting in smaller maximum mass stars compared with the case without any condensate.Comment: 20 pages, 7 figures; final version to appear in Physical Review
    • …
    corecore