15 research outputs found

    Pojava rđe (Puccinia spp.) na jesenjem belom luku tokom 2014. godine

    Get PDF
    Recently, garlic rust may have developed into a significant problem for our agro-ecological climate. Evaluation trials of winter garlic rust occurrence and the disease severity have been conducted in five locations. Intensity of infection was evaluated 3 times. Simultaneously, leaf samples were collected for microscopic examination. In all locations during third decade of April individual uredosori sporadically occurred in garlic leaves, relatively early compared to its previous years occurrence. The highest rust rate was in third evaluation, when majority of plants were completely covered with uredosoris. Microscopic examination of uredosori, in all samples revealed physiologically mature urediniospores indicating a number of secondary infections.Rđa na belom luku u našim agroekološkim uslovima postaje sve značajnije oboljenje, koje se pojavljuje intenzivnije u poslednjih nekoliko godina. Ispitivanja pojave i intenziteta napada rđe na jesenjem belom luku, sprovedena su na pet lokaliteta u 2014. godini. Ocena intenziteta infekcije vršena je tri puta, a istovremeno su prikupljani uzorci listova za mikroskopska ispitivanja. Pojava pojedinačnih uredosorusa na listovima luka primećena je relativno rano, u odnosu na prethodne godine, u trećoj dekadi aprila. Pojava patogena utvrđena je na svim ispitivanim lokalitetima. Najveći intenzitet zaraze zabeležen je prilikom trećeg pregleda, kada su ustanovljene biljke potpuno prekrivene uredosorusima parazita. Mikroskopskim pregledom uredosorusa, kod svih prikupljenih uzoraka u različitim terminima, utvrđene su fiziološki zrele uredospore, što je ukazalo na više sekundarnih infekcija

    Design of the EnVisS instrument optical head

    Get PDF
    The EnVisS (Entire Visible Sky) instrument is one of the payloads of the European Space Agency Comet Interceptor mission. The aim of the mission is the study of a dynamically new comet, i.e. a comet that never travelled through the solar system, or an interstellar object, entering the inner solar system. As the mission three-spacecraft system passes through the comet coma, the EnVisS instrument maps the sky, as viewed from the interior of the comet tail, providing information on the dust properties and distribution. EnVisS is mounted on a spinning spacecraft and the full sky (i.e. 360°x180°) is entirely mapped thanks to a very wide field of view (180°x45°) optical design selected for the EnVisS camera. The paper presents the design of the EnVisS optical head. A fisheye optical layout has been selected because of the required wide field of view (180°x45°). This kind of layout has recently found several applications in Earth remote sensing (3MI instrument on MetOp SG) and in space exploration (SMEI instrument on Coriolis, MARCI on Mars reconnaissance orbiter). The EnVisS optical head provides a high resolved image to be coupled with a COTS detector featuring 2kx2k pixels with pitch 5.5µm. Chromatic aberration is corrected in the waveband 550-800nm, while the distortion has been controlled over the whole field of view to remain below 8% with respect to an Fθ mapping law. Since the camera will be switched on 24 hours before the comet closest encounter, the operative temperature will change during the approaching phase and crossing of the comet’s coma. In the paper, we discuss the solution adopted for reaching these challenging performances for a space-grade design, while at the same time respecting the demanding small allocated volume and mass for the optical and mechanical design. The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency

    Catalog of Galactic Beta Cephei Stars

    Full text link
    We present an extensive and up-to-date catalog of Galactic Beta Cephei stars. This catalog is intended to give a comprehensive overview of observational characteristics of all known Beta Cephei stars. 93 stars could be confirmed to be Beta Cephei stars. For some stars we re-analyzed published data or conducted our own analyses. 61 stars were rejected from the final Beta Cephei list, and 77 stars are suspected to be Beta Cephei stars. A list of critically selected pulsation frequencies for confirmed Beta Cephei stars is also presented. We analyze the Beta Cephei stars as a group, such as the distributions of their spectral types, projected rotational velocities, radial velocities, pulsation periods, and Galactic coordinates. We confirm that the majority of these stars are multiperiodic pulsators. We show that, besides two exceptions, the Beta Cephei stars with high pulsation amplitudes are slow rotators. We construct a theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are MS objects. We discuss the observational boundaries of Beta Cephei pulsation and their physical parameters. We corroborate that the excited pulsation modes are near to the radial fundamental mode in frequency and we show that the mass distribution of the stars peaks at 12 solar masses. We point out that the theoretical instability strip of the Beta Cephei stars is filled neither at the cool nor at the hot end and attempt to explain this observation

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    Characterisation of disks around YSOs with GENIE

    Full text link
    Recent interferometric observations show that the interfered near-IR size of the circumstellar material around Young Stellar Object (YSO) are larger than those expected from accretion disk models. There are currently different models that account for the excess IR emission of Young Stellar Objects (YSO). At the same time, the answers to many questions on the evolutionary status and the origin of the activity and variability depend critically on the relative importance of circumstellar distribution of material in disks or envelopes at different spatial scales. Operating at mid-infrared wavelengths, the Ground-based European Nulling Interferometer Experiment (GENIE) will be particularly sensitive to warm circumstellar dust and will thus provide the opportunity to characterize dust disks around YSOs. Observations with GENIE will enable us to investigate the properties of the circumstellar dust, which are responsible for the excess near-infrared fluxes. The nulling of the central star will bring out the disk in much more detail and hence put stronger constraints on these models
    corecore