422 research outputs found

    Mammalian ribosomal protein S3a genes and intron-encoded small nucleolar RNAs U73 and U82

    Get PDF
    http://www.ester.ee/record=b4330778~S58*es

    Uut tüüpi ravim vere kolesteroolisisalduse vähendamiseks tuli koos olulise eelisega

    Get PDF
    Eesti Arst 2021; 100(6):389–39

    Murranguline tehnoloogia, mis võib pakkuda palju enamat kui koroonavaktsiinid

    Get PDF
    Eesti Arst 2021; 100(2):72–77 &nbsp

    Locations of several novel 2'-O-methylated nucleotides in human 28S rRNA

    Get PDF
    BACKGROUND: Ribose 2'-O-methylation, the most common nucleotide modification in mammalian rRNA, is directed by the C/D box small nucleolar RNAs (snoRNAs). Thus far, more than fifty putative human rRNA methylation guide snoRNAs have been identified. For nine of these snoRNAs, the respective ribose methylations in human 28S rRNA have been only presumptive. RESULTS: In this study, the methylation state of human 28S rRNA in the positions predicted by the snoRNAs U21, U26, U31, U48, U50, U73, U74, U80 and U81 was assessed using reverse transcription-based methods and several novel 2'-O-methylations were localized. CONCLUSIONS: Seven novel ribose 2'-O-methylated residues (Am389, Am391, Gm1604, Gm1739, Gm2853, Cm3810, Gm4156, predicted by snoRNAs U26, U81, U80, U73, U50, U74 and U31, respectively) have been localized in human 28S rRNA. The total number of 2'-O-methylations in human rRNA is not yet known

    2022. aasta inimgeneetikas

    Get PDF
    Eesti Arst 2023; 102(1):46–4

    Reduced expression of miR-146a in human bronchial epithelial cells alters neutrophil migration

    Get PDF
    Abstract Background The role of miRNAs in the pathogenesis and determining the phenotypes of asthma is not fully elucidated. miR-146a has been previously shown to suppress inflammatory responses in different cells. In this study, we investigated the functions of miR-146a in human bronchial epithelial cells (HBECs) in association with neutrophilic, eosinophilic, and paucigranulocytic phenotypes of asthma. Methods Bronchial brushing specimens and brochial mucosal biopsy samples were collected from adult patients with asthma and from age- and gender-matched non-asthmatic individuals. The expression of miR-146a in bronchial brushing specimens, bronchial biopsy tissue sections or cultured primary bronchial epithelial cells was analyzed by RT-qPCR or by in situ hybridization. The expression of direct and indirect miR-146a target genes was determined by RT-qPCR or ELISA. The migration of neutrophils was studied by neutrophil chemotaxis assay and flow cytometry. For statistical analysis, unpaired two-way Student’s t test, one-way ANOVA or linear regression analysis were used. Results Reduced expression of miR-146a was found in bronchial brushing specimens from asthma patients as compared to non-asthmatics and irrespective of the phenotype of asthma. In the same samples, the neutrophil attracting chemokines IL-8 and CXCL1 showed increased expression in patients with neutrophilic asthma and increased IL-33 expression was found in patients with eosinophilic asthma. Linear regression analysis revealed a significant negative association between the expression of miR-146a in bronchial brushings and neutrophil cell counts in bronchoalveolar lavage fluid of patients with asthma. In bronchial biopsy specimens, the level of miR-146a was highest in the epithelium as determined with in situ hybridization. In primary conventional HBEC culture, the expression of miR-146a was induced in response to the stimulation with IL-17A, TNF-α, and IL-4. The mRNA expression and secretion of IL-8 and CXCL1 was inhibited in both stimulated and unstimulated HBECs transfected with miR-146a mimics. Supernatants from HBECs transfected with miR-146a had reduced capability of supporting neutrophil migration in neutrophil chemotaxis assay. Conclusion Our results suggest that decreased level of miR-146a in HBECs from patients with asthma may contribute to the development of neutrophilic phenotype of asthma

    The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression

    Get PDF
    Mutations in the gene autoimmune regulator (AIRE) cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of tissue-restricted antigens. By the combined use of biochemical and biophysical methods, we show that AIRE selectively interacts with histone H3 through its first plant homeodomain (PHD) finger (AIRE–PHD1) and preferentially binds to non-methylated H3K4 (H3K4me0). Accordingly, in vivo AIRE binds to and activates promoters containing low levels of H3K4me3 in human embryonic kidney 293 cells. We conclude that AIRE–PHD1 is an important member of a newly identified class of PHD fingers that specifically recognize H3K4me0, thus providing a new link between the status of histone modifications and the regulation of tissue-restricted antigen expression in thymus

    Allergoid–mannan conjugates reprogram monocytes into tolerogenic dendritic cells via epigenetic and metabolic rewiring

    Get PDF
    Allergoid–mannan conjugates are novel vaccines for allergen-specific immunotherapy being currently assayed in phase 2 clinical trials. Allergoid–mannan conjugates target dendritic cells (DCs) and generate functional forkhead box P3 (FOXP3)-positive Treg cells, but their capacity to reprogram monocyte differentiation remains unknown

    AIRE activated tissue specific genes have histone modifications associated with inactive chromatin

    Get PDF
    The Autoimmune Regulator (AIRE) protein is expressed in thymic medullary epithelial cells, where it promotes the ectopic expression of tissue-restricted antigens needed for efficient negative selection of developing thymocytes. Mutations in AIRE cause APECED syndrome, which is characterized by a breakdown of self-tolerance. The molecular mechanism by which AIRE increases the expression of a variety of different genes remains unknown. Here, we studied AIRE-regulated genes using whole genome expression analysis and chromatin immunoprecipitation. We show that AIRE preferentially activates genes that are tissue-specific and characterized by low levels of initial expression in stably transfected HEK293 cell model and mouse thymic medullary epithelial cells. In addition, the AIRE-regulated genes lack active chromatin marks, such as histone H3 trimethylation (H3K4me3) and acetylation (AcH3), on their promoters. We also show that during activation by AIRE, the target genes acquire histone H3 modifications associated with transcription and RNA polymerase II. In conclusion, our data show that AIRE is able to promote ectopic gene expression from chromatin associated with histone modifications characteristic to inactive genes

    Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monocyte-derived macrophages and dendritic cells (DCs) are important in inflammatory processes and are often used for immunotherapeutic approaches. Blood monocytes can be differentiated into macrophages and DCs, which is accompanied with transcriptional changes in many genes, including chemokines and cell surface markers.</p> <p>Results</p> <p>To study the chromatin modifications associated with this differentiation, we performed a genome wide analysis of histone H3 trimethylation on lysine 4 (H3K4me3) and 27 (H3K27me3) as well as acetylation of H3 lysines (AcH3) in promoter regions. We report that both H3K4me3 and AcH3 marks significantly correlate with transcriptionally active genes whereas H3K27me3 mark is associated with inactive gene promoters. During differentiation, the H3K4me3 levels decreased on monocyte-specific CD14, CCR2 and CX3CR1 but increased on DC-specific TM7SF4/DC-STAMP, TREM2 and CD209/DC-SIGN genes. Genes associated with phagocytosis and antigen presentation were marked by H3K4me3 modifications. We also report that H3K4me3 levels on clustered chemokine and surface marker genes often correlate with transcriptional activity.</p> <p>Conclusion</p> <p>Our results provide a basis for further functional correlations between gene expression and histone modifications in monocyte-derived macrophages and DCs.</p
    corecore