438 research outputs found

    Breaking Symmetry Rules Enhance the Options for Stereoselective Propene Polymerization Catalysis

    Get PDF
    An example of breaking "Ewen's symmetry rule" for olefin catalysis polymerization is proposed by DFT calculations. Catalyst precursors with Cs symmetry are suggested to promote the isotactic propene polymerization by a modification of the active site geometry obtained via coordination with AlH-alkyl species in solution. The origin of stereocontrol in olefin polymerization is due to a dual mechanism dictated by the chiral catalyst. These findings may expand the toolbox for promoting stereoselective olefin polymerization by transition metal catalysts

    Combined Structural, Chemometric, and Electrochemical Investigation of Vertically Aligned TiO2 Nanotubes for Na-ion Batteries

    Get PDF
    In the challenging scenario of anode materials for sodium-ion batteries, TiO2 nanotubes could represent a winning choice in terms of cost, scalability of the preparation procedure, and long-term stability upon reversible operation in electrochemical cells. In this work, a detailed physicochemical, computational, and electrochemical characterization is carried out on TiO2 nanotubes synthesized by varying growth time and heat treatment, viz. the two most significant experimental parameters during preparation. A chemometric approach is proposed to obtain a concrete and solid multivariate analysis of sodium battery electrode materials. Such a statistical approach, combined with prolonged galvanostatic cycling and density functional theory analysis, allows identifying anatase at high growth time as the TiO2 polymorph of choice as an anode material, thus creating a benchmark for sodium-ion batteries, which currently took the center stage of the research in the field of energy storage systems from renewables

    Impact of sensor-augmented pump therapy with predictive low-glucose management on hypoglycemia and glycemic control in patients with type 1 diabetes mellitus : 1-year follow-up

    Get PDF
    Q2Artículo original2625-2631AIMS: To describe real-life experience with sensor-augmented pump therapy with predictive low-glucose management (SAPT-PLGM), in terms of hypoglycemia and glycemic control after one year of follow-up in T1D patients with hypoglycemia as the main indication of therapy. METHODS: Retrospective cohort study under real life conditions. Baseline and one-year follow-up variables of glycemic control, hypoglycemia and glycemic variability were compared. RESULTS: Fifty patients were included, 31 on prior treatment with SAPT with low-glucose suspend (LGS) feature and 19 on multiple dose insulin injections (MDI). Mean HbA1c decreased in the MDI group (8.24%-7.08%; p = 0.0001). HbA1c change was not significant in the SAPT-LGS group. Area under the curve (AUC) below 70 mg/dl improved in both SAPT-LGS and MDI groups while AUC, %time and events below 54 mg/dl decreased in SAPT-LGS group. Glycemic variability improved in the MDI group. Less patients presented severe hypoglycemia with SAPT-PLGM in both groups, however the change was non-significant. CONCLUSIONS: Under real life conditions, SAPT-PLGM reduced metrics of hypoglycemia in patients previously treaded with MDI and SAPT-LGS without deteriorating glycemic control in SAPT-LGS patients, while improving it in patients treated with MDI

    Ab initio Study of Anchoring Groups for CuGaO2 Delafossite-Based p-Type Dye Sensitized Solar Cells

    Get PDF
    Here we report the first theoretical characterization of the interface between the CuGaO2 delafossite oxide and the carboxylic (–COOH) and phosphonic acid (–PO3H2) anchoring groups. The promising use of delafossites as effective alternative to nickel oxide in p-type DSSC is still limited by practical difficulties in sensitizing the delafossite surface. Thus, this work provides atomistic insights on the structure and energetics of all the possible interactions between the anchoring functional groups and the CuGaO2 surface species, including the effects of the Mg doping and of the solvent medium. Our results highlight the presence of a strong selectivity toward the monodentate binding mode on surface Ga atoms for both the carboxylic and phosphonic acid groups. Since the binding modes have a strong influence on the hole injection thermodynamics, these findings have direct implications for further development of delafossite based p-type DSSCs

    d-Glucose Adsorption on the TiO2 Anatase (100) Surface: A Direct Comparison Between Cluster-Based and Periodic Approaches

    Get PDF
    Titanium dioxide (TiO2) has been extensively studied as a suitable material for a wide range of fields including catalysis and sensing. For example, TiO2-based nanoparticles are active in the catalytic conversion of glucose into value-added chemicals, while the good biocompatibility of titania allows for its application in innovative biosensing devices for glucose detection. A key process for efficient and selective biosensors and catalysts is the interaction and binding mode between the analyte and the sensor/catalyst surface. The relevant features regard both the molecular recognition event and its effects on the nanoparticle electronic structure. In this work, we address both these features by combining two first-principles methods based on periodic boundary conditions and cluster approaches (CAs). While the former allows for the investigation of extended materials and surfaces, CAs focus only on a local region of the surface but allow for using hybrid functionals with low computational cost, leading to a highly accurate description of electronic properties. Moreover, the CA is suitable for the study of reaction mechanisms and charged systems, which can be cumbersome with PBC. Here, a direct and detailed comparison of the two computational methodologies is applied for the investigation of d-glucose on the TiO2 (100) anatase surface. As an alternative to the commonly used PBC calculations, the CA is successfully exploited to characterize the formation of surface and subsurface oxygen vacancies and to determine their decisive role in d-glucose adsorption. The results of such direct comparison allow for the selection of an efficient, finite-size structural model that is suitable for future investigations of biosensor electrocatalytic processes and biomass conversion catalysis.</p

    Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems

    Full text link
    This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jafc.0c02407[EN] Enzymatic browning is one of the main problems faced by the food industry due to the enzyme polyphenol oxidase (PPO) provoking an undesirable color change in the presence of oxygen. Here, we report the evaluation of 10 different azamacrocyclic compounds with diverse morphologies as potential inhibitors against the activity of PPO, both in model and real systems. An initial screening of 10 ligands shows that all azamacrocyclic compounds inhibit to some extent the enzymatic browning, but the molecular structure plays a crucial role on the power of inhibition. Kinetic studies of the most active ligand (L2) reveal a S-parabolic I-parabolic noncompetitive inhibition mechanism and a remarkable inhibition at micromolar concentration (IC50 = 10 mu M). Furthermore, L2 action has been proven on apple juice to significantly reduce the enzymatic browning.Financial support by the Spanish Ministerio de Ciencia, Innovacion y Universidades (project RTI2018-100910-B-C44), Ministerio de Economia y Competitividad (projects CTQ2016-78499-C6-1-R, Unidad de Excelencia MDM 2015-0038 and CTQ2017-90852-REDC), and Generalitat Valenciana (Project PROMETEOII2015-002) is gratefully acknowledged.Muñoz-Pina, S.; Ros-Lis, JV.; Delgado-Pinar, E.; MartĂ­nez-Camarena, Á.; Verdejo, B.; GarcĂ­a-España, E.; ArgĂŒelles Foix, AL.... (2020). Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems. Journal of Agricultural and Food Chemistry. 68(30):7964-7973. https://doi.org/10.1021/acs.jafc.0c02407796479736830Simpson, B. K. (Ed.). (2012). Food Biochemistry and Food Processing. doi:10.1002/9781118308035Ä°yidoǧan, N. F., & Bayındırlı, A. (2004). Effect of l-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice. Journal of Food Engineering, 62(3), 299-304. doi:10.1016/s0260-8774(03)00243-7Croguennec, T. (2016). Enzymatic Browning. Handbook of Food Science and Technology 1, 159-181. doi:10.1002/9781119268659.ch6BrĂŒtsch, L., Rugiero, S., Serrano, S. S., StĂ€deli, C., Windhab, E. J., Fischer, P., & Kuster, S. (2018). Targeted Inhibition of Enzymatic Browning in Wheat Pastry Dough. Journal of Agricultural and Food Chemistry, 66(46), 12353-12360. doi:10.1021/acs.jafc.8b04477Ma, L., Zhang, M., Bhandari, B., & Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23-38. doi:10.1016/j.tifs.2017.03.005Queiroz, C., Mendes Lopes, M. L., Fialho, E., & Valente-Mesquita, V. L. (2008). Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Reviews International, 24(4), 361-375. doi:10.1080/87559120802089332Seo, S.-Y., Sharma, V. K., & Sharma, N. (2003). Mushroom Tyrosinase:  Recent Prospects. Journal of Agricultural and Food Chemistry, 51(10), 2837-2853. doi:10.1021/jf020826fTRONC, J.-S., LAMARCHE, F., & MAKHLOUF, J. (1997). Enzymatic Browning Inhibition in Cloudy Apple Juice by Electrodialysis. Journal of Food Science, 62(1), 75-78. doi:10.1111/j.1365-2621.1997.tb04371.xJiang, S., & Penner, M. H. (2019). The nature of ÎČ-cyclodextrin inhibition of potato polyphenol oxidase-catalyzed reactions. Food Chemistry, 298, 125004. doi:10.1016/j.foodchem.2019.125004Buckow, R., Kastell, A., Terefe, N. S., & Versteeg, C. (2010). Pressure and Temperature Effects on Degradation Kinetics and Storage Stability of Total Anthocyanins in Blueberry Juice. Journal of Agricultural and Food Chemistry, 58(18), 10076-10084. doi:10.1021/jf1015347Massini, L., Rico, D., & Martin-Diana, A. B. (2018). Quality Attributes of Apple Juice. Fruit Juices, 45-57. doi:10.1016/b978-0-12-802230-6.00004-7McEvily, A. J., Iyengar, R., & Otwell, W. S. (1992). Inhibition of enzymatic browning in foods and beverages. Critical Reviews in Food Science and Nutrition, 32(3), 253-273. doi:10.1080/10408399209527599Iyengar, R., & McEvily, A. J. (1992). Anti-browning agents: alternatives to the use of sulfites in foods. Trends in Food Science & Technology, 3, 60-64. doi:10.1016/0924-2244(92)90131-fMuñoz-Pina, S., Ros-Lis, J. V., ArgĂŒelles, Á., Coll, C., MartĂ­nez-Måñez, R., & AndrĂ©s, A. (2018). Full inhibition of enzymatic browning in the presence of thiol-functionalised silica nanomaterial. Food Chemistry, 241, 199-205. doi:10.1016/j.foodchem.2017.08.059Muñoz-Pina, S., Ros-Lis, J. V., ArgĂŒelles, Á., MartĂ­nez-Måñez, R., & AndrĂ©s, A. (2020). Influence of the functionalisation of mesoporous silica material UVM-7 on polyphenol oxidase enzyme capture and enzymatic browning. Food Chemistry, 310, 125741. doi:10.1016/j.foodchem.2019.125741Castillo, C. E., Måñez, M. A., Basallote, M. G., Clares, M. P., Blasco, S., & GarcĂ­a-España, E. (2012). Copper(ii) complexes of quinoline polyazamacrocyclic scorpiand-type ligands: X-ray, equilibrium and kinetic studies. Dalton Transactions, 41(18), 5617. doi:10.1039/c2dt30223cSantra, S., Mukherjee, S., Bej, S., Saha, S., & Ghosh, P. (2015). Amino-ether macrocycle that forms CuII templated threaded heteroleptic complexes: a detailed selectivity, structural and theoretical investigations. Dalton Transactions, 44(34), 15198-15211. doi:10.1039/c5dt00596eFan, R., Serrano-Plana, J., Oloo, W. N., Draksharapu, A., Delgado-Pinar, E., Company, A., 
 MĂŒnck, E. (2018). Spectroscopic and DFT Characterization of a Highly Reactive Nonheme FeV–Oxo Intermediate. Journal of the American Chemical Society, 140(11), 3916-3928. doi:10.1021/jacs.7b11400MartĂ­nez-Camarena, Á., Liberato, A., Delgado-Pinar, E., Algarra, A. G., Pitarch-Jarque, J., Llinares, J. M., 
 GarcĂ­a-España, E. (2018). Coordination Chemistry of Cu2+ Complexes of Small N-Alkylated Tetra-azacyclophanes with SOD Activity. Inorganic Chemistry, 57(17), 10961-10973. doi:10.1021/acs.inorgchem.8b01492Algarra, A. G., Basallote, M. G., Belda, R., Blasco, S., Castillo, C. E., Llinares, J. M., 
 Verdejo, B. (2009). Synthesis, Protonation and CuIIComplexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies. European Journal of Inorganic Chemistry, 2009(1), 62-75. doi:10.1002/ejic.200800576DĂ­az, P., Basallote, M. G., Måñez, M. A., GarcĂ­a-España, E., Gil, L., Latorre, J., 
 Luis, S. V. (2003). Thermodynamic and kinetic studies on the Cu2+ coordination chemistry of a novel binucleating pyridinophane ligandElectronic supplementary information (ESI) available: Table S1: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with ligand L. Table S2: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with macrocycle L1. Fig. S1: Variation of some selected 13C chemical shifts as a function of pH. See http://www.rsc.org/suppdata/dt/b2/b209013a/. Dalton Transactions, (6), 1186-1193. doi:10.1039/b209013aBasallote, M. G., DomĂ©nech, A., Ferrer, A., GarcĂ­a-España, E., Llinares, J. M., Måñez, M. A., 
 Verdejo, B. (2006). Synthesis and Cu(II) coordination of two new hexaamines containing alternated propylenic and ethylenic chains: Kinetic studies on pH-driven metal ion slippage movements. Inorganica Chimica Acta, 359(7), 2004-2014. doi:10.1016/j.ica.2006.01.030Acosta-Rueda, L., Delgado-Pinar, E., Pitarch-Jarque, J., RodrĂ­guez, A., Blasco, S., GonzĂĄlez, J., 
 GarcĂ­a-España, E. (2015). Correlation between the molecular structure and the kinetics of decomposition of azamacrocyclic copper(ii) complexes. Dalton Transactions, 44(17), 8255-8266. doi:10.1039/c5dt00408jAlarcĂłn, J., Albelda, M. T., Belda, R., Clares, M. P., Delgado-Pinar, E., FrĂ­as, J. C., 
 Soriano, C. (2008). Synthesis and coordination properties of an azamacrocyclic Zn(II) chemosensor containing pendent methylnaphthyl groups. Dalton Transactions, (46), 6530. doi:10.1039/b808993kClares, M. P., Aguilar, J., Aucejo, R., Lodeiro, C., Albelda, M. T., Pina, F., 
 GarcĂ­a-España, E. (2004). Synthesis and H+, Cu2+, and Zn2+Coordination Behavior of a Bis(fluorophoric) Bibrachial Lariat Aza-Crown. Inorganic Chemistry, 43(19), 6114-6122. doi:10.1021/ic049694tSiddiq, M., & Dolan, K. D. (2017). Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chemistry, 218, 216-220. doi:10.1016/j.foodchem.2016.09.061Munjal, N., & Sawhney, S. . (2002). Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbial Technology, 30(5), 613-619. doi:10.1016/s0141-0229(02)00019-4Vermeer, L. M., Higgins, C. A., Roman, D. L., & Doorn, J. A. (2013). Real-time monitoring of tyrosine hydroxylase activity using a plate reader assay. Analytical Biochemistry, 432(1), 11-15. doi:10.1016/j.ab.2012.09.005EspĂ­n, J. C., VarĂłn, R., Fenoll, L. G., Gilabert, M. A., GarcĂ­a-RuĂ­z, P. A., Tudela, J., & GarcĂ­a-CĂĄnovas, F. (2000). Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. European Journal of Biochemistry, 267(5), 1270-1279. doi:10.1046/j.1432-1327.2000.01013.xMarcantoni, E., & Petrini, M. (2016). Recent Developments in the Stereoselective Synthesis of Nitrogen-Containing Heterocycles usingN-Acylimines as Reactive Substrates. Advanced Synthesis & Catalysis, 358(23), 3657-3682. doi:10.1002/adsc.201600644Liu, W., Zou, L., Liu, J., Zhang, Z., Liu, C., & Liang, R. (2013). The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase. Food Chemistry, 140(1-2), 289-295. doi:10.1016/j.foodchem.2013.02.028Son, S. M., Moon, K. D., & Lee, C. Y. (2000). Kinetic Study of Oxalic Acid Inhibition on Enzymatic Browning. Journal of Agricultural and Food Chemistry, 48(6), 2071-2074. doi:10.1021/jf991397xÖZ, F., COLAK, A., ÖZEL, A., SAĞLAM ERTUNGA, N., & SESLI, E. (2011). PURIFICATION AND CHARACTERIZATION OF A MUSHROOM POLYPHENOL OXIDASE AND ITS ACTIVITY IN ORGANIC SOLVENTS. Journal of Food Biochemistry, 37(1), 36-44. doi:10.1111/j.1745-4514.2011.00604.xAyaz, F. A., Demir, O., Torun, H., Kolcuoglu, Y., & Colak, A. (2008). Characterization of polyphenoloxidase (PPO) and total phenolic contents in medlar (Mespilus germanica L.) fruit during ripening and over ripening. Food Chemistry, 106(1), 291-298. doi:10.1016/j.foodchem.2007.05.096Qin, X.-Y., Lee, J., Zheng, L., Yang, J.-M., Gong, Y., & Park, Y.-D. (2018). Inhibition of α-glucosidase by 2-thiobarbituric acid: Molecular dynamics simulation integrating parabolic noncompetitive inhibition kinetics. Process Biochemistry, 65, 62-70. doi:10.1016/j.procbio.2017.10.016Chakrabarty, S. P., Ramapanicker, R., Mishra, R., Chandrasekaran, S., & Balaram, H. (2009). Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity. Bioorganic & Medicinal Chemistry, 17(23), 8060-8072. doi:10.1016/j.bmc.2009.10.003Gou, L., Lee, J., Yang, J.-M., Park, Y.-D., Zhou, H.-M., Zhan, Y., & LĂŒ, Z.-R. (2017). Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations. International Journal of Biological Macromolecules, 105, 1663-1669. doi:10.1016/j.ijbiomac.2016.12.013Tang, H., Cui, F., Li, H., Huang, Q., & Li, Y. (2018). Understanding the inhibitory mechanism of tea polyphenols against tyrosinase using fluorescence spectroscopy, cyclic voltammetry, oximetry, and molecular simulations. RSC Advances, 8(15), 8310-8318. doi:10.1039/c7ra12749aDewey, T. G. (Ed.). (1991). Biophysical and Biochemical Aspects of Fluorescence Spectroscopy. doi:10.1007/978-1-4757-9513-4Gou, L., Lee, J., Hao, H., Park, Y.-D., Zhan, Y., & LĂŒ, Z.-R. (2017). The effect of oxaloacetic acid on tyrosinase activity and structure: Integration of inhibition kinetics with docking simulation. International Journal of Biological Macromolecules, 101, 59-66. doi:10.1016/j.ijbiomac.2017.03.07

    Vaginal metabolome: towards a minimally invasive diagnosis of microbial invasion of the amniotic cavity in women with preterm labor

    Get PDF
    Microbial invasion of the amniotic cavity (MIAC) is only identified by amniocentesis, an invasive procedure that limits its clinical translation. Here, we aimed to evaluate whether the vaginal metabolome discriminates the presence/absence of MIAC in women with preterm labor (PTL) and intact membranes. We conducted a case-control study in women with symptoms of PTL below 34 weeks who underwent amniocentesis to discard MIAC. MIAC was defined as amniotic fluid positive for microorganisms identified by specific culture media. The cohort included 16 women with MIAC and 16 control (no MIAC). Both groups were matched for age and gestational age at admission. Vaginal fluid samples were collected shortly after amniocentesis. Metabolic profiles were analyzed by nuclear magnetic resonance (NMR) spectroscopy and compared using multivariate and univariate statistical analyses to identify significant differences between the two groups. The vaginal metabolomics profile of MIAC showed higher concentrations of hypoxanthine, proline, choline and acetylcholine and decreased concentrations of phenylalanine, glutamine, isoleucine, leucine and glycerophosphocholine. In conclusion, metabolic changes in the NMR-based vaginal metabolic profile are able to discriminate the presence/absence of MIAC in women with PTL and intact membranes. These metabolic changes might be indicative of enhanced glycolysis triggered by hypoxia conditions as a consequence of bacterial infection, thus explaining the utilization of alternative energy sources in an attempt to replenish glucose

    Dexibuprofen biodegradable nanoparticles: one step closer towards a better ocular interaction study

    Get PDF
    Ocular inflammation is one of the most prevalent diseases in ophthalmology, which can affect various parts of the eye or the surrounding tissues. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, are commonly used to treat ocular inflammation in the form of eye-drops. However, their bioavailability in ocular tissues is very low (less than 5%). Therefore, drug delivery systems such as biodegradable polymeric PLGA nanoparticles constitute a suitable alternative to topical eye administration, as they can improve ocular bioavailability and simultaneously reduce drug induced side effects. Moreover, their prolonged drug release can enhance patient treatment adherence as they require fewer administrations. Therefore, several formulations of PLGA based nanoparticles encapsulating dexibuprofen (active enantiomer of Ibuprofen) were prepared using the solvent displacement method employing different surfactants. The formulations have been characterized and their interactions with a customized lipid corneal membrane model were studied. Ex vivo permeation through ocular tissues and in vivo anti-inflammatory efficacy have also been studied.This work was supported by grant RTI2018-094120-B-I00 from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and the European Regional Development Fund. ESL wants to acknowledge the Institute of Nanoscience and Nanotechnology (ART2018 project).info:eu-repo/semantics/publishedVersio
    • 

    corecore