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ABSTRACT: An example of breaking “Ewen’s symmetry rule” for olefin catalysis polymerization is proposed by DFT calculations.
Catalyst precursors with Cs symmetry are suggested to promote the isotactic propene polymerization by a modification of the active
site geometry obtained via coordination with AlH−alkyl species in solution. The origin of stereocontrol in olefin polymerization is
due to a dual mechanism dictated by the chiral catalyst. These findings may expand the toolbox for promoting stereoselective olefin
polymerization by transition metal catalysts.

■ INTRODUCTION

Homogeneous transition metal (TM) catalysis for stereo-
selective propene polymerization is showing an extraordinary
vitality despite its age.1,2 Highly stereoregular polypropylenes
(PP), both isotactic (iPP) and syndiotactic (sPP), are
available,3 due to the enantiomorphic site (ES) control
where the ligand chirality selects the enantioface of the
prochiral monomer.4 Fine tuning of PP microstructure is
achieved with homogeneous catalysts operating by ES
mechanisms following “Ewen’s symmetry rules”.5 These
relationships correlate the chirality and symmetry of the
catalyst precursors with the PP tacticity rationalizing the
experimental evidence that C2 (and/or C1) and Cs symmetry
precursors produce iPP and sPP, respectively (the complete list
of the five classes are reported in Figure S1 of the Supporting
Information).6,7 The discovery of pentacoordinated-pyridyl−
amide complexes,8 a family of catalysts used in industrial
process,9 appeared to be an exception to these rules because
ES-controlled iPP was obtained with catalysts derived from
achiral Cs-symmetric precursors (such as 1 in Chart 1).10−12

However, computational13 and experimental studies14,15

revealed that the active species are formed by in situ ligand
modification via monomer insertion into the Hf−Caryl bond,
rescuing the above Ewen symmetry rules. Theoretical
studies16,17 combined with experimental techniques18 have
also ascribed the origin of stereocontrol for such pyridyl−

amide systems to a direct ligand−monomer interaction instead
of the usual chiral control by the growing chain.19−22

Modifications of the pentacoordinated ligand with N-
heteroarylpyridylamido tridentate ligands (see systems 2a
and 2b in Chart 1) were reported by Pellecchia23−25 and
extensive high-throughput optimization of thiazole-amido
hafnium compounds (see system 3, Chart 1) was done by
Symyx.26 Interestingly, system 2a produces iPP by ES control
despite the “time averaged” Cs-symmetric structure in solution
(see Figure S2).23 The reason for this behavior is still unclear
whereas more straightforward results are reported for the
system 2b24 and 3.26 The latter systems (both having a C1-
symmetry) show high stereoselectivities in the propene
polymerization in line with expectations (see Chart 1). As
we will report in this work, the explanation for the
stereoselectivity promoted by systems 2a enlightened by
DFT calculations (see Supporting Information for computa-
tional details) may be extended to system 2b and 3 and will
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enlarge the toolbox available for inducing stereoselective olefin
polymerization catalyzed by TM.

■ RESULTS AND DISCUSSION
First of all, we verified by DFT calculations the energetic
differences (free energies) for the potential propene insertion
in the M−X bond (M = Zr and X = N for systems 2a and 2b;
M = Hf and X = O for system 3) versus propene insertion in
the M−CH3 bond for systems 1−3. The energetic differences
of the low-lying transition states (TS) are called ΔE(ΔG)C/X
and reported in Table 1 (second column). Negative values

indicate that the first propene insertion generates a ligand
modification before the further insertions in M-CH3 bond (as
system 1 in Chart 1). The (high) positive values of
ΔE(ΔG)C/X we calculated for systems 2−3 (from 3.6 to 7.0
kcal/mol) suggest that the presence of heteroatoms in a place
of Caryl bond guides the first propene insertion to the M-CH3

bond, so systems 2 and 3 are not suitable for in situ chemical
ligand modification by monomer insertion (see Figure S3 for
relevant TS geometries). Discarding this hypothesis, we
investigated the stereoselectivity of propene insertion of
system 2a by using an iBu residue to model the growing
polymer chain. Interestingly, we found that the two low lying
TSs for the two propene enantioface insertions are
corresponding to structures with different coordination
geometries. The insertion TS for the primary (or 1,2) re
enantioface reported in Figure 1A, resembles a square pyramid
(SP) whereas a distorted trigonal bipyramid (TBP) is obtained
for the 1,2 si enantioface (Figure 1B). The (small) preference
of TBP with respect to SP (see the ΔE(ΔG)stereo values
reported in Table 1) seems due to a direct ligand−monomer
effect: the si propene has the methyl group pointing toward the
2,6-iPr2C6H3 ring and the way to alleviate the steric contact is
by assuming a TBP coordination. In agreement with this
hypothesis the preferred secondary (or 2,1) enantioface
insertion is the one with a square pyramid structure and
with the methyl group pointing far from the 2,6-iPr2C6H3

moiety (see ΔE(ΔG)regio in Table 1 and Figure S4 for the TS
geometries).

Chart 1. Systems Analyzed in This Study

Table 1. Energetic Values (Free Energies) for the Propene
TSs Calculated for Systems 1−3 of Chart 1e

system ΔE(ΔG)C/Xa ΔE(ΔG)site1/2b ΔE(ΔG)stereoc ΔE(ΔG)regiod

1 −4.6 (−4.9) 6.1 (5.6) 0.7 (1.2) 2.0 (2.3)
2a 7.0 (7.8) − 0.1 (0.3) 1.7 (0.7)
2b 4.9 (5.1) 0.4 (1.5) 2.6 (1.6) 1.1 (1.1)
3 3.6 (5.0) 2.2 (3.8) 2.1 (2.5) 3.5 (3.5)

aCalculated energetic preference for propene insertion on M−X
versus M-CH3 bond (X = CAryl, N and O for systems 1, 2a, 2b, and 3,
respectively). bEnergetic difference between propene TSs at site 1
(SP) and site 2 (TBP). Positive numbers indicate the energetic
preference for site 1 with a SP structure. cCalculated stereoselectivity.
dCalculated regioselectivity. eValues (in kcal/mol) are referred to the
most stable TS set as reference point.

Figure 1. Propene insertion TSs into the growing polymer chain for the system 2a with the re (A) and si (B) enantiofaces. The geometry resembles
a square pyramid in structure A and a distorted trigonal bipyramid in structure B.
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A way out to improve the stereoselectivity of the whole
process by increasing the selection of propene enantioface may
be moving from Cs to C1 symmetry by adding a substituent on
the methylene bridge bonded to the N-aryl ring so forming a
stereogenic center (marked with ∗, compare systems 2a and 2b
in Chart 1).24 This generates an active species with two
diasterotopic coordination sites analogously to the ones
already discussed in literature for system 1 (and here called
for simplicity site 1 for SP and site 2 for TBP).16−18 Our results
computed on systems 2b and 3 (see Table 1) suggest that
higher stereoselectivities are obtained via increasing the direct
monomer interaction exerted by the 2,6-iPr2C6H3 ring
reinforced by the 2-isopropyl-phenyl substituent on the C*
in a concerted mechanism (see Figure 2 for system 2b and
Figure S5 for system 3) at the preferred active site 1 (see
ΔE(ΔG)stereo and ΔE(ΔG)site1/2 values reported in Table 1).
This seems to correlate with the experimental finding of a
higher isotacticity obtained by 2b with respect to 2a (see Chart
1).24

We call this “direct flow of information” to distinguish this
chiral stereocontrol to the one reported for ansa-metallocene
and postmetallocene systems based on the oriented growing
chain that acts as “messenger of information between the chiral
active site and the prochiral monomer”.20 It may help to recall
at this stage that the results reported here are still not
explaining the iPP produced by system 2a because alternating
propylene enantiofaces coming from enantiotopic sites should
produce sPP (with low stereoregularity due to the small value
of ΔE(ΔG)stereo of Table 1) and that is difficult to identify the
driving force able to modify the migratory insertion step27 (as
2a and 3, see the ΔE(ΔG)site1/2 values of Table 1).28 In order
to find an explanation, we thought that a plausible modification
of 2a active sites geometry in solution may be obtained by
additional coordination of chemical species at the metal center
so inducing an octahedral environment similar to the one
achieved by 1 after ligand modification in situ (see Figure
S6A). Pellecchia and co-workers23 stressed needing of AliBu2H
species in combination with methyaluminoxane (MAO) in
order to obtain iPP with 2a and suggested the formation
homobinuclear/heterobinuclear equilibria, resulting in
[(N,N,N-)Zr(μ-H)nAliBu2]

+ species25 so we reinvestigated
the propene polymerization of systems 2-3 in the presence of
AlH−alkyl species.29,30 For clarity we show the results
obtained with AlHMe2 after checking that they are really
similar to the ones obtained with AliBu2H species. We found a

stable coordination of AlHMe2 at the cationic active species 2a
(see ΔE(ΔG)coord column in Table 2)31 with the formation of

Npyrrolic−Al bond and with the H bridge by Al and metal center
(see Figure 3) whereas (much) lower ΔE(ΔG)coord are
calculated by replacing AlHMe2 with AlMe3.

32 The final
geometry shows a six-member ring resembling the seven-
member ring obtained by 1 after monoinsertion product (for a
direct comparison of the two systems, see Figure S6A and
Figure S6B).
The additional effect of AlH−alkyl coordination to the TM

center is to vary the energetics for the two available
coordination positions for the monomer and growing chain
(see Figure 3).33 The preference we calculated for propene
insertion TS reported in Figure 3B (having the growing chain
trans to the coordinated Al species and a pseudo TBP
geometry) with respect to analogous TS of Figure 3A (with the
incoming monomer trans to the coordinated Al species and a
SP geometry) is below 1 kcal/mol (see ΔE(ΔG)site1/2 in Table
2) and molecular orbital analysis (MO) of the two TSs
confirms the above statement (see Figure S7).34 It is
worthwhile to note that the preferred monomer enantiofaces
for both sites are the same and are selected by a direct ligand
control for the SP site (see Figure 3A) and by the chiral
conformation of the growing polymer chain for the TBP site
(Figure 3B). A further support of such assertion is obtained by
analyzing the stereoselectivity of the propene insertion into
Zr−CH3 bond (so in the absence of a chiral polymer chain)
and, accordingly, we calculated high stereoselectivities for the
SP site and a lack of stereoselection for the TBP site.35

Figure 2. Propene insertion TSs into the polymer chain for the system 2b with the re (A) and si (B) enantioface at the more stable site 1 with a SP
geometry. The direct interaction of 2,6-iPr2C6H3 ring with the si propene enantioface reinforced by the 2-isopropyl-phenyl substituent on the
stereogenic C atom ∗ is shown by red arrows.

Table 2. Energetic Values (Free Energies) for the Propene
TSs Calculated for the Systems 1−3 of Chart 1 in the
Presence of AlHMe2

e

system ΔE(ΔG)coorda ΔE(ΔG)site1/2b ΔE(ΔG)stereoc ΔE(ΔG)regiod

2a −31.4 (−12.4) −1.4 (−1.0) 2.0 (2.1) 2.3 (1.9)
2b −34.0 (−13.5) 1.8 (2.7) 2.6 (2.7) 2.4 (2.5)
3 −38.0 (−16.5) 6.2 (6.5) 2.8 (3.0) 3.7 (4.0)

aCalculated energetic coordination of AlHMe2 to the active species of
Table 1.31 bEnergetic difference between propene TS insertions at site
1 (SP) and site 2 (TBP). Positive numbers indicate the energetic
preference for site 1 with a SP structure. cCalculated stereoselectivity.
dCalculated regioselectivity. eValues (in kcal/mol) are referred to the
most stable TS set as reference point.
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Two coordination sites of the same active species showing
(different) origin of stereocontrol is unprecedented in TM-
catalyzed polymerization; this may explain the isotactic control
of 2a and could also be exploited for enhancing the
stereoselection of monomer insertion.
Direct experimental evidence of such active species has not

been obtained by advanced 1D and 2D NMR spectroscopy
experiments,25 and we thought that a further support of our
model may be found by computing the regiochemistry of
propene insertion. The regiodefects detected in the 13CNMR
spectra of iPP samples synthesized with 2a and 2b show
isolated regioinverted units with vicinal methyls in threo
configuration attributed to the catalyst selection of the same
propene enantioface for both 1,2 and 2,1 insertions.23,36,37 In
agreement with these experimental evidence we found that (1)
the preferred 2,1 TSs are inserted at site 1 (see Figure 4) with a
calculated value in line with the experiments (see ΔE(ΔG)regio
of Table 2);38 (2) the (high) preference (2.5 kcal/mol) for the
2,1 with re (Figure 4A) versus si enantioface is due to steric
interaction of the latter with the pyrrolic moiety (see dotted
line in Figure 4B) leading to a larger Zr−N−C angle of 131.7°
with respect to 126.2°; (3) the preferred secondary insertion
shows the same enantioface of the primary one (compare
Figure 4A with Figure 3).

All these findings may be extended to the pentacoordinated
C1-systems 2b and 3;39 for the former, both stereo- and
regiocalculated values (see ΔE(ΔG)stereo and ΔE(ΔG)regio in
Table 2) are higher with respect to 2a, in agreement with the
experimental data;38 for the latter, the high value of
ΔE(ΔG)site1/2 reported in Table 2 indicates a polymerization
stereocontrol with a clear preference for the direct monomer
control similar to the one reported for the pyridylamido family
(see Table 1).16−18

■ CONCLUSIONS

In conclusion, a theoretical analysis of propene polymerization
promoted by pentacoordinated N-heteroarylpyridylamido
tridentate ligands sorted out several catalyst design features:
(i) these systems are prone to chemical modification with
formation of active species showing coordination geometries
different from the catalyst precursors; (ii) “Ewen’s symmetry
rules” reported in classical textbooks work well for ansa-
metallocenes but should, at least, be updated to account for
recent cases of active species modification;40 (iii) the tacticity
control by the chiral site can be exerted via a direct ligand
monomer interaction and/or by chiral conformation of the
growing polymer chain, and the competition of these two

Figure 3. Propene insertion TSs into the polymer chain for system 2a at the two diasterotopic active sites formed by AlHMe2 coordination at the
metal center. H atoms omitted for clarity with the exception of the one bonded to the metal (in yellow). Distances in Å.

Figure 4. Secondary propene insertion TSs into the growing polymer chain for the system 2a with re (A) and si (B) enantiofaces at active site 1
with AlHMe2 coordination. The energetic preference of structure A with respect to structure B is 2.5 (2.4) kcal/mol and structure A shows the
same enantioface of the preferred 1,2 insertion reported in Figure 3. H atoms omitted for clarity with the exception of the one bonded to the metal
(in yellow). Distances in Å and angles in deg.
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models depends on a combination of electronic and steric
factors.
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