7 research outputs found
Pharmacothérapie ciblée dans la cholestase intrahépatique familiale progressive de type 2 (PFIC2)
ABCB11/BSEP is the main bile acids transporter located at the canalicular pole of hepatocytes. Mutations of ABCB11 are responsible for progressive familial intrahepatic cholestasis type 2.During my phD, I evaluated the ability of aminoglycosides and PTC124 to induce readthrough of premature termination codons, targeting and function of nonsense and missense mutants of Bsep and also the effect of combined therapy (readthrough + chaperone).In our expermental models, gentamicin increased readthrough of p.R1090X mutation NIH3T3, HEK293 and Can 10 lines. The resulting full-length protein was detected at the plasma membrane of HEK293 and at the canalicular membrane of Can 10 cells; and was partially functional since it was responsible for increasing the transport activity of 3H-taurocholate (3H-TC) in MDCK clones. These effects were potentiated by the addition of chaperone drugs such as 4-phenylbutyrate (4-PB).I have also demonstrated the ability of new 4-PB derived compounds (MHMPB, OTNC and HMPB) to correct mistrafficking and to increase 3H-TC transport of BsepR1128C missense mutant at lower concentrations than 4-PB. Finally, I showed that other chaperone drugs (GPB, PA, SAHA, and C18) were able to correct mistrafiking of BsepR1128C and to increase its 3H-TC transport activity in MDCK clones.ABCB11/BSEP est le transporteur des acides biliaires, localisé au niveau du pôle canaliculaire des hépatocytes. Les mutations de ce gène sont responsables de la cholestase familiale intrahépatique progressive de type 2.Au cours de ma thèse, j’ai évalué la capacité des aminoglycosides et du PTC124 à induire la translecture de codons stop prématurés, l’adressage et la fonction de mutants non-sens et faux sens de Bsep ainsi que l’effet d’une bithérapie (translecture+chaperone).Dans nos modèles cellulaires, la gentamicine était capable d’induire la translecture du codon-stop prématuré du mutant non-sens BsepR1090X dans les lignées NIH3T3, HEK293 et Can 10. La protéine entière générée était partiellement détectée aux membranes plasmiques des cellules HEK293 et canaliculaires des cellules Can 10 et était partiellement fonctionnelle puisqu’elle était responsable d’une augmentation de l’activité de transport de 3H-taurocholate (3H-TC) dans les clones MDCK. Ces effets étaient potentialisés par l’addition de drogues chaperones telles que le 4-phenylbutyrate (4-PB).J’ai également mis en évidence la capacité de nouveaux composés dérivés du 4-PB (MHMPB, OTNC et HMPB) à corriger l’adressage et à augmenter le transport de 3H-TC du mutant faux sens BsepR1128C à des concentrations plus faibles que le 4-PB. Enfin, j’ai pu montrer que d'autres drogues chaperones (GPB, PA, SAHA et C18), pouvaient corriger l’adressage canaliculaire de BsepR1128C et augmenter son activité de transport de 3H-TC dans les clones MDCK
Targeted Pharmacotherapy for Progressive Familial Intrahepatic Cholestasis type 2 (PFIC2)
ABCB11/BSEP est le transporteur des acides biliaires, localisé au niveau du pôle canaliculaire des hépatocytes. Les mutations de ce gène sont responsables de la cholestase familiale intrahépatique progressive de type 2.Au cours de ma thèse, j’ai évalué la capacité des aminoglycosides et du PTC124 à induire la translecture de codons stop prématurés, l’adressage et la fonction de mutants non-sens et faux sens de Bsep ainsi que l’effet d’une bithérapie (translecture+chaperone).Dans nos modèles cellulaires, la gentamicine était capable d’induire la translecture du codon-stop prématuré du mutant non-sens BsepR1090X dans les lignées NIH3T3, HEK293 et Can 10. La protéine entière générée était partiellement détectée aux membranes plasmiques des cellules HEK293 et canaliculaires des cellules Can 10 et était partiellement fonctionnelle puisqu’elle était responsable d’une augmentation de l’activité de transport de 3H-taurocholate (3H-TC) dans les clones MDCK. Ces effets étaient potentialisés par l’addition de drogues chaperones telles que le 4-phenylbutyrate (4-PB).J’ai également mis en évidence la capacité de nouveaux composés dérivés du 4-PB (MHMPB, OTNC et HMPB) à corriger l’adressage et à augmenter le transport de 3H-TC du mutant faux sens BsepR1128C à des concentrations plus faibles que le 4-PB. Enfin, j’ai pu montrer que d'autres drogues chaperones (GPB, PA, SAHA et C18), pouvaient corriger l’adressage canaliculaire de BsepR1128C et augmenter son activité de transport de 3H-TC dans les clones MDCK.ABCB11/BSEP is the main bile acids transporter located at the canalicular pole of hepatocytes. Mutations of ABCB11 are responsible for progressive familial intrahepatic cholestasis type 2.During my phD, I evaluated the ability of aminoglycosides and PTC124 to induce readthrough of premature termination codons, targeting and function of nonsense and missense mutants of Bsep and also the effect of combined therapy (readthrough + chaperone).In our expermental models, gentamicin increased readthrough of p.R1090X mutation NIH3T3, HEK293 and Can 10 lines. The resulting full-length protein was detected at the plasma membrane of HEK293 and at the canalicular membrane of Can 10 cells; and was partially functional since it was responsible for increasing the transport activity of 3H-taurocholate (3H-TC) in MDCK clones. These effects were potentiated by the addition of chaperone drugs such as 4-phenylbutyrate (4-PB).I have also demonstrated the ability of new 4-PB derived compounds (MHMPB, OTNC and HMPB) to correct mistrafficking and to increase 3H-TC transport of BsepR1128C missense mutant at lower concentrations than 4-PB. Finally, I showed that other chaperone drugs (GPB, PA, SAHA, and C18) were able to correct mistrafiking of BsepR1128C and to increase its 3H-TC transport activity in MDCK clones
Pharmacological premature termination codon readthrough of ABCB11 in bile salt export pump deficiency: an in vitro study
International audienceBACKGROUND & AIMS: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic mutations in ABCB11 encoding the canalicular bile salt export pump (BSEP). Nonsense mutations are responsible for the most severe phenotypes. The aim was to assess the ability of drugs to induce readthrough of six nonsense mutations (p.Y354X, p.R415X, p.R470X, p.R1057X, p.R1090X and p.E1302X) identified in PFIC2 patients. APPROACH & RESULTS: The ability of G418, gentamicin and PTC124 to induce readthrough was studied using a dual gene reporter system in NIH3T3 cells. The ability of gentamicin to induce readthrough and to lead to the expression of a full-length protein was studied in HEK293, HepG2 and Can 10 cells, using immunodetection assays. The function of the gentamicin-induced full-length protein was studied by measuring the [3 H[3H] ]-taurocholate transcellular transport in stable MDCK clones co-expressing Ntcp. Combinations of gentamicin and chaperone drugs (UDCA, 4-PB) were investigated. In NIH3T3, aminoglycosides significantly increased readthrough level of all mutations studied, while PTC124 only slightly increased readthrough of p.E1302X. Gentamicin, induced a readthrough of p.R415X, p.R470X, p.R1057X, p.R1090X in HEK293 cells. The resulting full-length proteins localized within the cytoplasm, except for BsepR1090X that was also detected at the plasma membrane of HEK293 and at the canalicular membrane of Can 10 and HepG2 cells. Additional treatment with 4-PB and UDCA significantly increased the canalicular proportion of full-length BsepR1090X protein in Can 10 cells. In MDCK clones, gentamicin induced a 40% increase of the BsepR1090X [3 H[3H] ] [3H] -taurocholate transport, which was further increased with additional 4-PB treatment. CONCLUSION: This study constitutes a proof of concept for readthrough therapy in selected PFIC2 patients with nonsense mutations
Cannabis Use Is Inversely Associated with Overweight and Obesity in Hepatitis B Virus-Infected Patients (ANRS CO22 Hepather Cohort)
International audienc
Cannabis Use Is Inversely Associated with Overweight and Obesity in Hepatitis B Virus-Infected Patients (ANRS CO22 Hepather Cohort)
International audienceBackground: Chronic hepatitis B virus (HBV) infection may evolve into cirrhosis and hepatocellular carcinoma, and this progression may be accelerated by specific risk factors, including overweight and obesity. Although evidence for a protective effect of cannabis use on elevated body weight has been found for other populations, no data are available for HBV-infected patients.Aims: We aimed to identify risk factors (including cannabis use) for overweight and obesity in patients with HBV chronic infection.Methods: Using baseline data from the French ANRS CO22 Hepather cohort, we performed two separate analyses, one using “central obesity” (based on waist circumference) and the other “overweight” and “obesity” (based on body mass index) as outcomes. Logistic and multinomial regressions were used to model central obesity and overweight/obesity, respectively.Results: Among the 3706 patients in the study population, 50.8% had central obesity, 34.7% overweight, and 14.4% obesity. After multivariable adjustment, current cannabis use was associated with a 59% lower risk of central obesity compared with no lifetime use (adjusted odds ratio [95% CI]: 0.41 [0.24 to 0.70]). It was also associated with a 54% and 84% lower risk of overweight (adjusted relative risk ratio [95% CI]: 0.46 [0.27 to 0.76]) and obesity (0.16 [0.04 to 0.67]), respectively.Conclusions: Cannabis use was associated with lower risks of overweight and obesity in patients with HBV chronic infection. Future studies should test whether these potential benefits of cannabis and cannabinoid use translate into reduced liver disease progression in this high-risk population
Cannabis use as a factor of lower corpulence in hepatitis C-infected patients: results from the ANRS CO22 Hepather cohort
International audienceBackground: Patients with chronic hepatitis C virus (HCV) infection are at greater risk of developing metabolic disorders. Obesity is a major risk factor for these disorders, and therefore, managing body weight is crucial. Cannabis use, which is common in these patients, has been associated with lower corpulence in various populations. However, this relationship has not yet been studied in persons with chronic HCV infection.Methods: Using baseline data from the French ANRS CO22 Hepather cohort, we used binary logistic and multinomial logistic regression models to test for an inverse relationship between cannabis use (former/current) and (i) central obesity (i.e., large waist circumference) and (ii) overweight and obesity (i.e., elevated body mass index (BMI)) in patients from the cohort who had chronic HCV infection. We also tested for relationships between cannabis use and both waist circumference and BMI as continuous variables, using linear regression models.Results: Among the 6348 participants in the study population, 55% had central obesity, 13.7% had obesity according to their BMI, and 12.4% were current cannabis users. After multivariable adjustment, current cannabis use was associated with lower risk of central obesity (adjusted odds ratio, aOR [95% confidence interval, CI]: 0.45 [0.37-0.55]), BMI-based obesity (adjusted relative risk ratio (aRRR) [95% CI]: 0.27 [0.19-0.39]), and overweight (aRRR [95% CI]: 0.47 [0.38-0.59]). This was also true for former use, but to a lesser extent. Former and current cannabis use were inversely associated with waist circumference and BMI.Conclusions: We found that former and, to a greater extent, current cannabis use were consistently associated with smaller waist circumference, lower BMI, and lower risks of overweight, obesity, and central obesity in patients with chronic HCV infection. Longitudinal studies are needed to confirm these relationships and to assess the effect of cannabis use on corpulence and liver outcomes after HCV cure.Trial registration: ClinicalTrials.gov identifier: NCT01953458