25 research outputs found

    Low-frequency components in harbor porpoise (Phocoena phocoena) clicks : communication signal, by-products, or artifacts?

    Get PDF
    Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): 4059-4068, doi:10.1121/1.2945154.Underwater sound signals for biosonar and communication normally have different source properties to serve the purposes of generating efficient acoustic backscatter from small objects or conveying information to conspecifics. Harbor porpoises (Phocoena phocoena) are nonwhistling toothed whales that produce directional, narrowband, high-frequency (HF) echolocation clicks. This study tests the hypothesis that their 130 kHz HF clicks also contain a low-frequency (LF) component more suited for communication. Clicks from three captive porpoises were analyzed to quantify the LF and HF source properties. The LF component is 59 (S.E.M=1.45 dB) dB lower than the HF component recorded on axis, and even at extreme off-axis angles of up to 135°, the HF component is 9 dB higher than the LF component. Consequently, the active space of the HF component will always be larger than that of the LF component. It is concluded that the LF component is a by-product of the sound generator rather than a dedicated pulse produced to serve communication purposes. It is demonstrated that distortion and clipping in analog tape recorders can explain some of the prominent LF components reported in earlier studies, emphasizing the risk of erroneous classification of sound types based on recording artifacts.This work was supported by the Carlsberg Foundation and Oticon, and via a Steno Scholarship from the Danish Natural Science Research Council to PTM

    A New Acoustic Portal into the Odontocete Ear and Vibrational Analysis of the Tympanoperiotic Complex

    Get PDF
    Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish

    The 24/7 approach to promoting optimal welfare for captive wild animals

    Get PDF
    We have an ethical responsibility to provide captive animals with environments that allow them to experience good welfare. Husbandry activities are often scheduled for the convenience of care staff working within the constraints of the facility, rather than considering the biological and psychological requirements of the animals themselves. The animal welfare 24/7 across the lifespan concept provides a holistic framework to map features of the animal’s life cycle, taking into account their natural history, in relation to variations in the captive environment, across day and night, weekdays, weekends, and seasons. In order for animals to have the opportunity to thrive, we argue the need to consider their lifetime experience, integrated into the environments we provide, and with their perspective in mind. Here, we propose a welfare assessment tool based upon 14 criteria, to allow care staff to determine if their animals’ welfare needs are met. We conclude that animal habitat management will be enhanced with the use of integrated technologies that provide the animals with more opportunities to engineer their own environments, providing them with complexity, choice and control

    Micro-scale spatial preference and temporal cyclicity linked to foraging in harbour porpoises

    No full text
    Habitat heterogeneity is a crucial driver for species distribution across scales. Harbour porpoise Phocoena phocoena basin-wide distribution is linked to prey availability, and small-scale (kilometres to tens of kilometres) differences in distribution are prevalent. However, information on porpoise distribution and foraging-behaviour variations on a micro-scale (similar to 100 m to kilometres) is limited. To monitor harbour porpoise distribution and foraging activity on a micro-scale, we deployed passive acoustic dataloggers, logging porpoise acoustic activity at 6 sites in a small, high porpoise-density area in southern Sweden. Data were collected for almost a year, giving detailed time series on porpoise activity. The time series were analysed using dynamic time warping to compare activity patterns between sites. Large differences were found between sites separated by only a few hundred meters, indicating micro-scale spatial preference. Spectral analysis for temporal cyclicity in activity revealed a dominant peak for 24 h cycles with higher activity at night for all sites. All sites also had a second peak for 29.5 d, linked to the lunar cycle with higher activity during full moon. Activity was overall highest during autumn and winter (September-December). Spatial and temporal patterns were linked to foraging, showing a positive correlation between porpoise presence and the percent of time present with detected foraging. The study demonstrates that harbour porpoise spatial distribution on a micro-scale should be considered in e.g. behavioural, management and conservation studies and actions. In addition, we show that time series statistical methodology is informative and appropriate for analysis of acoustic temporal data

    From echolocation clicks to animal density - Acoustic sampling of harbour porpoises with static dataloggers

    No full text
    Monitoring abundance and population trends of small odontocetes is notoriously difficult and labor intensive. There is a need to develop alternative methods to the traditional visual line transect surveys, especially for low density areas. Here, the prospect of obtaining robust density estimates for porpoises by passive acoustic monitoring (PAM) is demonstrated by combining rigorous application of methods adapted from distance sampling to PAM. Acoustic dataloggers (T-PODs) were deployed in an area where harbor porpoises concurrently were tracked visually. Probability of detection was estimated in a mark–recapture approach, where a visual sighting constituted a “mark”and a simultaneous acoustic detection a “recapture.” As a distance could be assigned to each visual observation, a detection function was estimated. Effective detection radius of T-PODs ranged from 22 to 104 m depending on T-POD type, T-POD sensitivity, train classification settings, and snapshot duration. The T-POD density estimates corresponded to the visual densities derived concurrently for the same period. With more dataloggers, located according to a systematic design, density estimates would be obtainable for a larger area. This provides a method suitable for monitoring in areas with densities too low for visual surveys to be practically feasible, e.g., theendangered harbor porpoise population in the Baltic
    corecore