86 research outputs found

    Reappraisal of the extinct seal 'Phoca' vitulinoides from the Neogene of the North Sea Basin, with bearing on its geological age, phylogenetic affinities, and locomotion

    Get PDF
    Background: Discovered on the southern margin of the North Sea Basin, "Phoca" vitulinoides represents one of the best-known extinct species of Phocidae. However, little attention has been given to the species ever since its original 19th century description. Newly discovered material, including the most complete specimen of fossil Phocidae from the North Sea Basin, prompted the redescription of the species. Also, the type material of "Phoca" vitulinoides is lost. Methods: "Phoca" vitulinoides is redescribed. Its phylogenetic position among Phocinae is assessed through phylogenetic analysis. Dinoflagellate cyst biostratigraphy is used to determine and reassess the geological age of the species. Myological descriptions of extant taxa are used to infer muscle attachments, and basic comparative anatomy of the gross morphology and biomechanics are applied to reconstruct locomotion. Results: Detailed redescription of "Phoca" vitulinoides indicates relatively little affinities with the genus Phoca, but rather asks for the establishment of a new genus: Nanophoca gen. nov. Hence, "Phoca" vitulinoides is recombined into Nanophoca vitulinoides. This reassignment is confirmed by the phylogenetic analysis, grouping the genus Nanophoca and other extinct phocine taxa as stem phocines. Biostratigraphy and lithostratigraphy expand the known stratigraphic range of N. vitulinoides from the late Langhian to the late Serravallian. The osteological anatomy of N. vitulinoides indicates a relatively strong development of muscles used for fore flipper propulsion and increased flexibility for the hind flipper. Discussion: The extended stratigraphic range of N. vitulinoides into the middle Miocene confirms relatively early diversification of Phocinae in the North Atlantic. Morphological features on the fore-and hindlimb of the species point toward an increased use of the fore flipper and greater flexibility of the hind flipper as compared to extant Phocinae, clearly indicating less derived locomotor strategies in this Miocene phocine species. Estimations of the overall body size indicate that N. vitulinoides is much smaller than Pusa, the smallest extant genus of Phocinae (and Phocidae), and than most extinct phocines

    Integrative Approach Uncovers New Patterns of Ecomorphological Convergence in Slow Arboreal Xenarthrans

    Get PDF
    Identifying ecomorphological convergence examples is a central focus in evolutionary biology. In xenarthrans, slow arboreality independently arose at least three times, in the two genera of ‘tree sloths’, Bradypus and Choloepus, and the silky anteater, Cyclopes. This specialized locomotor ecology is expectedly reflected by distinctive morpho-functional convergences. Cyclopes, although sharing several ecological features with ‘tree sloths’, do not fully mirror the latter in their outstandingly similar suspensory slow arboreal locomotion. We hypothesized that the morphology of Cyclopes is closer to ‘tree sloths’ than to anteaters, but yet distinct, entailing that slow arboreal xenarthrans evolved through ‘incomplete’ convergence. In a multivariate trait space, slow arboreal xenarthrans are hence expected to depart from their sister taxa evolving toward the same area, but not showing extensive phenotypical overlap, due to the distinct position of Cyclopes. Conversely, a pattern of ‘complete’ convergence (i.e., widely overlapping morphologies) is hypothesized for ‘tree sloths’. Through phylogenetic comparative methods, we quantified humeral and femoral convergence in slow arboreal xenarthrans, including a sample of extant and extinct non-slow arboreal xenarthrans. Through 3D geometric morphometrics, cross-sectional properties (CSP) and trabecular architecture, we integratively quantified external shape, diaphyseal anatomy and internal epiphyseal structure. Several traits converged in slow arboreal xenarthrans, especially those pertaining to CSP. Phylomorphospaces and quantitative convergence analyses substantiated the expected patterns of ‘incomplete’ and ‘complete’ convergence for slow arboreal xenarthrans and ‘tree sloths’, respectively. This work, highlighting previously unidentified convergence patterns, emphasizes the value of an integrative multi-pronged quantitative approach to cope with complex mechanisms underlying ecomorphological convergence.Humboldt-UniversitĂ€t zu Berlin (1034)Peer Reviewe

    Unique bone microanatomy reveals ancestry of subterranean specializations in mammals

    Full text link
    Acquiring a subterranean lifestyle entails a substantial shift for many aspects of terrestrial vertebrates’ biology. Although this lifestyle is associated with multiple instances of convergent evolution, the relative success of some subterranean lineages largely remains unexplained. Here, we focus on the mammalian transitions to life underground, quantifying bone microanatomy through high-resolution X-ray tomography. The true moles stand out in this dataset. Examination of this family's bone histology reveals that the highly fossorial moles acquired a unique phenotype involving large amounts of compacted coarse cancellous bone. This phenotype exceeds the adaptive optimum seemingly shared by several other subterranean mammals and can be traced back to some of the first known members of the family. This remarkable microanatomy was acquired early in the history of the group and evolved faster than the gross morphology innovations of true moles’ forelimb. This echoes the pattern described for other lifestyle transitions, such as the acquisition of bone mass specializations in secondarily aquatic tetrapods. Highly plastic traits—such as those pertaining to bone structure—are hence involved in the early stages of different types of lifestyle transitions

    Exceptional skull of huayqueriana (mammalia, litopterna, macraucheniidae) from the late miocene of Argentina: Anatomy, systematics, and peleobiological implications

    Get PDF
    The Huayquerías Formation (Late Miocene, Huayquerian SALMA) is broadly exposed in westcentral Argentina (Mendoza). The target of several major paleontological expeditions in the first half of the 20th century, the Mendozan Huayquerías (badlands) have recently yielded a significant number of new fossil finds. In this contribution we describe a complete skull (IANIGLA-PV 29) and place it systematically as Huayqueriana cf. H. cristata (Rovereto, 1914) (Litopterna, Macraucheniidae). The specimen shares some nonexclusive features with H. cristata (similar size, rostral border of the orbit almost level with distal border of M3, convergence of maxillary bones at the level of the P3/P4 embrasure, flat snout, very protruding orbits, round outline of premaxillary area in palatal view, and small diastemata between I3/C and C/P1). Other differences (e.g., lack of sagittal crest) may or may not represent intraspecific variation. In addition to other features described here, endocast reconstruction utilizing computer tomography (CT) revealed the presence of a derived position of the orbitotemporal canal running below the rhinal fissure along the lateroventral aspect of the piriform lobe. CT scanning also established that the maxillary nerve (CN V2) leaves the skull through the sphenoorbital fissure, as in all other litopterns, a point previously contested for macraucheniids. The angle between the lateral semicircular canal and the plane of the base of the skull is about 26°, indicating that in life the head was oriented much as in modern horses. Depending on the variables used, estimates of the body mass of IANIGLA-PV 29 produced somewhat conflicting results. Our preferred body mass estimate is 250 kg, based on the centroid size of 36 3D cranial landmarks and accompanying low prediction error. The advanced degree of tooth wear in IANIGLA-PV 29 implies that the individual died well into old age. However, a count of cementum lines on the sectioned left M2 is consistent with an age at death of 10 or 11 years, younger than expected given its body mass. This suggests that the animal had a very abrasive diet. Phylogenetic analysis failed to resolve the position of IANIGLA-PV 29 satisfactorily, a result possibly influenced by intraspecific variation. There is no decisive evidence for the proposition that Huayqueriana, or any other litoptern, were foregut fermenters.Fil: Forasiepi, Analia Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: MacPhee, Ross D. E.. American Museum Of Natural History; Estados UnidosFil: Hernåndez del Pino, Santiago Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Schmidt, Gabriela Ines. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Amson, Eli. Universitat Zurich; SuizaFil: Grohé, Camille. American Museum Of Natural History; Estados Unido

    Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals

    Get PDF
    Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.publishedVersio

    Exceptional skull of huayqueriana (mammalia, litopterna, macraucheniidae) from the late miocene of Argentina: Anatomy, systematics, and peleobiological implications

    Get PDF
    The Huayquerías Formation (Late Miocene, Huayquerian SALMA) is broadly exposed in westcentral Argentina (Mendoza). The target of several major paleontological expeditions in the first half of the 20th century, the Mendozan Huayquerías (badlands) have recently yielded a significant number of new fossil finds. In this contribution we describe a complete skull (IANIGLA-PV 29) and place it systematically as Huayqueriana cf. H. cristata (Rovereto, 1914) (Litopterna, Macraucheniidae). The specimen shares some nonexclusive features with H. cristata (similar size, rostral border of the orbit almost level with distal border of M3, convergence of maxillary bones at the level of the P3/P4 embrasure, flat snout, very protruding orbits, round outline of premaxillary area in palatal view, and small diastemata between I3/C and C/P1). Other differences (e.g., lack of sagittal crest) may or may not represent intraspecific variation. In addition to other features described here, endocast reconstruction utilizing computer tomography (CT) revealed the presence of a derived position of the orbitotemporal canal running below the rhinal fissure along the lateroventral aspect of the piriform lobe. CT scanning also established that the maxillary nerve (CN V2) leaves the skull through the sphenoorbital fissure, as in all other litopterns, a point previously contested for macraucheniids. The angle between the lateral semicircular canal and the plane of the base of the skull is about 26°, indicating that in life the head was oriented much as in modern horses. Depending on the variables used, estimates of the body mass of IANIGLA-PV 29 produced somewhat conflicting results. Our preferred body mass estimate is 250 kg, based on the centroid size of 36 3D cranial landmarks and accompanying low prediction error. The advanced degree of tooth wear in IANIGLA-PV 29 implies that the individual died well into old age. However, a count of cementum lines on the sectioned left M2 is consistent with an age at death of 10 or 11 years, younger than expected given its body mass. This suggests that the animal had a very abrasive diet. Phylogenetic analysis failed to resolve the position of IANIGLA-PV 29 satisfactorily, a result possibly influenced by intraspecific variation. There is no decisive evidence for the proposition that Huayqueriana, or any other litoptern, were foregut fermenters.Fil: Forasiepi, Analia Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: MacPhee, Ross D. E.. American Museum Of Natural History; Estados UnidosFil: Hernåndez del Pino, Santiago Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Schmidt, Gabriela Ines. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Amson, Eli. Universitat Zurich; SuizaFil: Grohé, Camille. American Museum Of Natural History; Estados Unido

    Homeotic transformations reflect departure from the mammalian 'rule of seven' cervical vertebrae in sloths: inferences on the Hox code and morphological modularity of the mammalian neck

    Get PDF
    Background: Sloths are one of only two exceptions to the mammalian 'rule of seven' vertebrae in the neck. As a striking case of breaking the evolutionary constraint, the explanation for the exceptional number of cervical vertebrae in sloths is still under debate. Two diverging hypotheses, both ultimately linked to the low metabolic rate of sloths, have been proposed: hypothesis 1 involves morphological transformation of vertebrae due to changes in the Hox gene expression pattern and hypothesis 2 assumes that the Hox gene expression pattern is not altered and the identity of the vertebrae is not changed. Direct evidence supporting either hypothesis would involve knowledge of the vertebral Hox code in sloths, but the realization of such studies is extremely limited. Here, on the basis of the previously established correlation between anterior Hox gene expression and the quantifiable vertebral shape, we present the morphological regionalization of the neck in three different species of sloths with aberrant cervical count providing indirect insight into the vertebral Hox code. Results: Shape differences within the cervical vertebral column suggest a mouse-like Hox code in the neck of sloths. We infer an anterior shift of HoxC-6 expression in association with the first thoracic vertebra in short-necked sloths with decreased cervical count, and a posterior shift of HoxC-5 and HoxC-6 expression in long-necked sloths with increased cervical count. Conclusion: Although only future developmental analyses in non-model organisms, such as sloths, will yield direct evidence for the evolutionary mechanism responsible for the aberrant number of cervical vertebrae, our observations lend support to hypothesis 1 indicating that the number of modules is retained but their boundaries are displaced. Our approach based on quantified morphological differences also provides a reliable basis for further research including fossil taxa such as extinct 'ground sloths' in order to trace the pattern and the underlying genetic mechanisms in the evolution of the vertebral column in mammals

    3D models related to the publication: Neogene sloth assemblages (Mammalia, Pilosa) of the Cocinetas Basin (La Guajira, Colombia): implications for the Great American Biotic Interchange

    Get PDF
    INTRODUCTION : We here present the surface models of two specimens of sloths(Mammalia, Tardigrada) coming from the Late Pliocene WareFormation (Cocinetas Basin, La Guajira, Colombia, see Table 1). Along with three additional sloth taxa found in the same Formation, these specimens document the great diversity of this Neotropical locality. Furthermore, they represent a sloth assemblage from a locality just a few hundred thousand years older than the classically recognized first main pulse of the Great American Biotic interchange, that is located few hundred kilometers away from the Isthmus of Panama, the most likely route of migration of terrestrial taxa. These specimens are hence important in the understanding of this majorpaleobiogeographic event

    Evolution of bone cortical compactness in slow arboreal mammals

    Get PDF
    Convergent evolution is a major topic in evolutionary biology. Low bone cortical compactness (CC, a measure of porosity of cortical bone) in the extant genera of “tree sloths,” has been linked to their convergent slow arboreal ecology. This proposed relationship of low CC with a slow arboreal lifestyle suggests potential convergent evolution of this trait in other slow arboreal mammals. Femoral and humeral CC were analyzed in “tree sloths,” lorisids, koala, and extinct palaeopropithecids and Megaladapis, in comparison to closely related but ecologically distinct taxa, in a phylogenetic framework. Low CC in “tree sloths” is unparalleled by any analyzed clade and the high CC in extinct sloths suggests the recent convergence of low CC in “tree sloths.” A tendency for low CC was found in Palaeopropithecus and Megaladapis. However, lorisids and the koala yielded unexpected CC patterns, preventing the recognition of a straightforward convergence of low CC in slow arboreal mammals. This study uncovers a complex relationship between CC and convergent evolution of slow arboreality, highlighting the multifactorial specificity of bone microstructure.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Kickstarter Program from RTNN (NC, USA)Elsa‐Neumann‐Stipendium (Humboldt‐UniversitĂ€t zu Berlin)Peer Reviewe
    • 

    corecore