99 research outputs found

    Towards Tighter Space Bounds for Counting Triangles and Other Substructures in Graph Streams

    Get PDF
    We revisit the much-studied problem of space-efficiently estimating the number of triangles in a graph stream, and extensions of this problem to counting fixed-sized cliques and cycles. For the important special case of counting triangles, we give a 4-pass, (1 +/- epsilon)-approximate, randomized algorithm using O-tilde(epsilon^(-2) m^(3/2) / T) space, where m is the number of edges and T is a promised lower bound on the number of triangles. This matches the space bound of a recent algorithm (McGregor et al., PODS 2016), with an arguably simpler and more general technique. We give an improved multi-pass lower bound of Omega(min{m^(3/2)/

    Long-range and short-range magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14

    Full text link
    Spin-spin correlations and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14 have been investigated by powder neutron diffraction. The present study reveals a 3D long-range magnetic ordering below 16 K where the magnetic structure consists of ferromagnetic trimers that are coupled ferromagnetically along the spin-chain. The moment components along the a and c axes arrange antiferromagnetically. Our study establishes that the uncompensated moment components along the b axis result in a net magnetization per unit cell. The magnetic structure, determined in the present study, is in agreement with the results of recent first principles calculation; however, it is in contrast to a fascinating experimental prediction of ferrimagnetic ordering based on the periodicity of the exchange interactions in CaNi3P4O14. Our study also confirms the presence of broad diffuse magnetic scattering, due to 1D short-range spin-spin correlations, over a wide temperature range below ~50 K down to a temperature well below the Tc. Total neutron scattering analysis by the RMC method reveals that the dominating spin-spin correlation above Tc is ferromagnetic and along the b axis. The nearest neighbour spin-spin correlations along the a and c axes are found to be weakly antiferromagnetic. The nature of the trimer spin structure of the short-range state is similar to that of the 3D long-range ordered state. The present investigation of microscopic nature of the magnetic ground state also explains the condition required for the 1/3 magnetization plateau to be observed in the trimer spin-chains. In spite of the S=1 trimer chain system, the present compound CaNi3P4O14 is found to be a good realization of 3D magnet below the Tc=16 K with full ordered moment values of ~2 mu_B/Ni2+ (1.98 and 1.96 mu_B/Ni2+ for two Ni sites, respectively) at 1.5 K.Comment: 10 pages, 8 figure

    Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

    Get PDF
    We study the problem of coloring a given graph using a small number of colors in several well-established models of computation for big data. These include the data streaming model, the general graph query model, the massively parallel computation (MPC) model, and the CONGESTED-CLIQUE and the LOCAL models of distributed computation. On the one hand, we give algorithms with sublinear complexity, for the appropriate notion of complexity in each of these models. Our algorithms color a graph GG using about κ(G)\kappa(G) colors, where κ(G)\kappa(G) is the degeneracy of GG: this parameter is closely related to the arboricity α(G)\alpha(G). As a function of κ(G)\kappa(G) alone, our results are close to best possible, since the optimal number of colors is κ(G)+1\kappa(G)+1. On the other hand, we establish certain lower bounds indicating that sublinear algorithms probably cannot go much further. In particular, we prove that any randomized coloring algorithm that uses κ(G)+1\kappa(G)+1 many colors, would require Ω(n2)\Omega(n^2) storage in the one pass streaming model, and Ω(n2)\Omega(n^2) many queries in the general graph query model, where nn is the number of vertices in the graph. These lower bounds hold even when the value of κ(G)\kappa(G) is known in advance; at the same time, our upper bounds do not require κ(G)\kappa(G) to be given in advance.Comment: 26 page

    Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India

    Get PDF
    Background: Sundarban is the world's largest coastal sediment comprising of mangrove forest which covers about one million hectares in the south-eastern parts of India and southern parts of Bangladesh. The microbial diversity in this sediment is largely unknown till date. In the present study an attempt has been made to understand the microbial diversity in this sediment using a cultivation-independent molecular approach. Results: Two 16 S rRNA gene libraries were constructed and partial sequencing of the selected clones was carried out to identify bacterial strains present in the sediment. Phylogenetic analysis of partially sequenced 16 S rRNA gene sequences revealed the diversity of bacterial strains in the Sundarban sediment. At least 8 different bacterial phyla were detected. The major divisions of detected bacterial phyla were Proteobacteria (alpha, beta, gamma, and delta), Flexibacteria (CFB group), Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes and Gammatimonadates. Conclusion: The gammaproteobacteria were found to be the most abundant bacterial group in Sundarban sediment. Many clones showed similarity with previously reported bacterial lineages recovered from various marine sediments. The present study indicates a probable hydrocarbon and oil contamination in this sediment. In the present study, a number of clones were identified that have shown similarity with bacterial clones or isolates responsible for the maintenance of the S-cycle in the saline environment

    Understanding the multiple magnetic structures of the intermetallic compound NdMn1.4Co0.6Si2

    Full text link
    Magnetic phases for the intermetallic compound NdMn1.4Co0.6Si2 have been investigated at various temperatures by dc magnetization, neutron diffraction and neutron depolarization. Our study shows multiple magnetic phase transitions with temperature (T) over 1.5-300 K. In agreement with dc-magnetization and neutron depolarization results, the temperature dependence of the neutron diffraction patterns shows five distinct regions with different magnetic phases. These temperature regions are (i) T >= 215 K, (ii) 215 K > T >= 50 K, (iii) 50 K > T >= 40 K, (iv) 40 K > T > 15 K, and (v) T =< 15 K. The corresponding magnetic structures are paramagnetic, commensurate collinear antiferromagnetic (AFM-I), incommensurate AFM (AFM-II), mixed ferromagnetic and AFM (FM+AFM-II), and incommensurate AFM (AFM-II), respectively.Comment: 26 pages, 10 figure

    Performance Analysis of Linear and Non-Linear Equalizer in Rician Channel

    Get PDF
    AbstractIn this paper, equalization algorithms applying soft–decision feedback, designed for quaternary phase–shift keying (QPSK) and 8PSK (phase–shift keying) transmission are introduced. The method employed is a minimum mean– squared error (MMSE) in which each iteration is done in order to refine the data estimates. The rule for generating soft decisions is adapted continuously to the current state of the algorithm. We show that standard Decision Feedback Equalization (DFE-Non linear Equaliser) methods are clearly outperformed the minimum mean–squared error (MMSE linear Equaliser). We use the MATLAB to show that the MMSE-DFE provide better performance with the increasing value of SNR in scattering environment
    corecore