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Abstract: Here we report a novel hydrothermal method to synthesize hybrid nanostructures 

based on single phase cobalt disulphide (CoS2) nanoparticles decorated on multiwalled carbon 

nanotubes (MWCNT) for application as supercapacitor electrode. This is also the first report 

on systematic investigation of the influence of MWCNTs on the electrochemical properties of 

CoS2 nanoparticle based electrode for supercapacitor. The X-ray diffraction and electron 

microscopic analyses revealed that incorporation of CNTs promote the growth of only CoS2 

phase in the form of spherical nanoparticles with an average diameter of ~9 nm. CoS2-

MWCNT nanohybrid electrode containing 20 wt% MWCNT showed the highest specific 

capacitance of 1486 F/gm at 1 A/gm discharge current density along with excellent 

reversibility. It also showed high cycle stability with ~80% retention of specific capacitance 

even after 10,000 cycles. Thus we show a low cost and simple method to synthesize a CoS2-

MWCNT nanohybrid that has great promise as electrode material for supercapacitor 

applications. Incorporation of CNT not only provides with a conducting network for fast 

charge diffusion but (due to large surface area) also allows more CoS2 molecules to be readily 

available for redox reaction resulting in the reduction of the charge transfer resistance 

consistent with the data obtained from electrochemical impedance spectroscopy.  

*Corresponding author Tel. +91 343 275 4780, Email: amit.chakraborty@phy.nitdgp.ac.in (Amit 

K. Chakraborty) 
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1. Introduction  

Environmental changes and depletion of conventional energy sources have lead the 

researchers towards alternative renewable energy sources to meet the high prerequisites of 

future applications. Supercapacitors, also known as electrochemical capacitors or 

ultracapacitors, have attracted immense interest in automobile and electronics industry 

because of their high energy and power densities along with long cycle life.1─4  

Supercapacitors can be classified into two categories, pseudocapacitors and electric double 

layer capacitors (EDLCs). In pseudocapacitors, charge storage happens by faradaic reduction-

oxidation reactions (redox reactions), and intercalation processes and usually exhibit higher 

capacitance values than those of EDLCs in which case the electrostatic storage of the 

electrical energy is achieved by separation of the charges in a Helmholtz double layer at the 

interface between the surface of a conductor electrode and an electrolyte.3 Various metal 

oxides (MnO2, Fe2O3, Co3O4), and conducting polymers (polyaniline, polypyrrole) are 

generally utilized as the cathode material in pseudocapacitors,5─9whereas carbon based 

nanostructures (carbon nanotube (CNT), graphene, etc.) are used in EDLC.3─10 Metal oxides 

have good electrocatalytic properties but suffer from poor electrical conductivity which 

restricts their performance as electrode.5─7Conducting polymers despite good redox 

properties suffer from slow ion diffusion rate, poor chemical and thermal stability leading to 

low cycle-life.8─9 On the other hand, in spite of excellent electrical conductivity, superior 

mechanical and chemical stability of CNT and graphene 11─12 poor specific capacitance 

restricts their use as supercapacitor electrode.  

Therefore, in order to design novel electrodes with fast charge transport property, high 

electrocatalytic activity and long cycle life, often two or more of these three groups of 

materials are combined to form hybrid nanocomposites.13─19 Transition metal sulphides and 

in particular, cobalt sulphide (CoS, CoS2, Co9S8 etc.)  have also been reported recently as a 

good pseudocapacitive material for supercapacitor electrode application.20─22However, poor 

electrical conductivity and tendency to agglomeration are the main hindrance for their 

application as electrodes which can be overcome by incorporation of carbon materials such as 

CNTs and graphene.23─28 The conducting pathways created by CNTs and graphene enable 

fast charge transfer in electrode/electrolyte interface due to their excellent electrical 

conductivity and large surface area. Among various phases of cobalt sulphide (CoS, Co9S8 

and CoS2), most reports in the literature demonstrate the use of only CoS-MWCNT 

composite for application in supercapacitor electrode. 23─25 But with Co9S8-MWCNT and 

https://en.wikipedia.org/wiki/Intercalation_(chemistry)
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CoS2-MWCNT, we could only get literature showing use in oxygen evolution reactions, 

photovoltaics, and batteries.23─33 To the best of our knowledge there are no reports showing 

the use of CoS2/MWCNT composite as supercapacitor electrode. Also, previous reports using 

CoS/MWCNT electrodes did not show any systematic investigation of the influence of CNTs 

on the electrochemical performance; rather what they reported is merely the synthesis and 

electrochemical properties of CoS/MWCNT composite thus leaving scope for further studies.  

In view of the above, here we report a novel hydrothermal method for the synthesis of CoS2-

MWCNT nanohybrids for application as supercapacitor electrodes. The method is simple, 

cost-effective and scalable. This is also the first instance of a systematic investigation of the 

influence of MWCNTs on the electrochemical properties of CoS2 nanoparticles. Several 

samples were prepared by varying the relative concentration of multiwalled CNT (MWCNT) 

in the nanohybrids to optimise the electrode performance. The microstructure and 

composition of these electrodes were initially characterized using electron microscopy, x-ray 

diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and the specific surface 

area was investigated by Brunauer-Emmett-Teller (BET) adsorption isotherms. 

Electrochemical measurements were carried out to evaluate their suitability as electrode 

material for supercapacitor and the results revealed that the synthesized CoS2-MWCNT 

nanohybrids have huge potential as future supercapacitor electrode material. 

 

2. Experimental  

 2.1. Chemicals and Reagents 

MWCNTs with 10-20 nm outer diameter, 10-30 µm length and 95% purity were purchased 

from Nanostructured & Amorphous Materials, Inc, Houston, USA.  Cobalt nitrate 

hexahydrate (Co(NO3)2,6H2O), l-cysteine, ethylene glycol, nafion, nitric acid (HNO3), 

sodium hydroxide (NaOH), isopropyl alcohol (IPA) were all purchased from Sigma Aldrich 

and all chemicals except MWCNTs were used as received without any further purification. 

2.2. Treatment of  MWCNT 

MWCNTs (1.5 gm) were refluxed in concentrated HNO3 (150 ml) at 140°C for 12 hours. 

This acid treatment is expected to introduce –COOH bonds to the walls of MWCNTs which 

in turn can enhance its chemical reactivity as well as remove amorphous carbon and residual 

inorganic impurities.34 After refluxing the reaction mixture was washed several times with 

deionized water until the pH value reached 7 and the MWCNTs were collected by filtering 
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through a Whatman filter paper. Finally the acid treated MWCNTs were dried in a vacuum 

oven at 60°C for overnight.  

2.2. Synthesis of  CoS2-MWCNT Nanohybrids 

Synthesis of the CoS2-MWCNT nanohybrids was carried out by, first, suspending specific 

amounts of MWCNT in deionized water (40 ml) under ultrasonication for 30 minutes. Then 

the reaction mixture was placed in a magnetic stirrer at 500 rpm for a further 20 minutes. 

Then Co(NO3)2,6H2O (20 mM) was added to the reactant mixture under stirring. After 30 

minutes 15 ml ethylene glycol was added slowly to the reaction vessel under vigorous 

stirring. After 15 minutes freshly prepared aqueous solution (40ml) of L-cysteine (3mg/ml) 

was added to the reaction mixture (Fig. 1). The reaction mixture was kept under stirring for 

another 1 hour and then transferred to a teflon lined stainless steel autoclave and heated in an 

oven at 150°C for 18 hours after which the autoclave was cooled normally to room 

temperature. The precipitate was washed several times with deionized water and ethanol 

before drying in a vacuum oven at 60 °C for 12 hours. Four different nanohybrid samples 

were prepared by changing the starting weight of the MWCNT: CoS2-MWCNT(1) containing 

10 wt% MWCNT, CoS2-MWCNT(2) containing 15 wt% MWCNT, CoS2-MWCNT(3) 

containing 20 wt% MWCNT, and CoS2-MWCNT(4) containing 25 wt% MWCNT. The bare 

cobalt sulphide control sample was also synthesized by the same route without the addition of 

the MWCNTs. 

 

Fig. 1: Schematic diagram showing the synthesis of the CoS2-MWCNT nanocomposite. For 

simplicity only one wall of the MWCNT is shown. 
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2.3. Material Characterization 

X-ray diffraction (XRD) study of the synthesized powdered samples was carried out using a 

Philips Panalytical Xpert Pro diffractometer irradiated by a Cu Kα x-ray source (λ = 1.54 Å) 

at room temperature. Electron micrographs were recorded using a Carl Zeiss Sigma scanning 

electron microscope (FESEM) equipped with a field emission gun and operated at 5 kV. High 

resolution transmission electron microscopy (HRTEM) images were recorded on a JEOL-

JEM 2100 transmission microscope operated at an accelerating voltage of 200 kV. The 

HRTEM samples were prepared by drop casting a homogeneous suspension of the samples 

on a carbon coated copper grid (300 mesh) and allowing it to dry in air. Elemental analysis 

was performed using an energy dispersive X-ray (EDX) spectroscope (Oxford Instruments) 

attached with the HRTEM. The specific surface areas of the samples were measured from the 

BET adsorption/desorption isotherms for nitrogen recorded using a BET surface analyser 

(Nova) supplied by Quantachrome Instruments, USA. 

Electrochemical analysis of the nanohybrid electrodes were carried out in a three electrode 

cell containing a glassy carbon working electrode, Ag/AgCl reference electrode and a Pt wire 

as counter electrode. Measurements were made using an electrochemical workstation 

(CH660E by CH Instruments, USA) typically operated within a voltage window of 0.0V to 

+1.0V. To prepare the working electrode, first an IPA solution was made by dissolving 

nafion (500 mg/l) of which 25 l was collected in a vial in which 5 mg of the as-synthesized 

nanohybrid  sample was added before sonicating for ten minutes. 5 l of this solution was 

then deposited on the pre-polished glassy carbon electrode (3 mm dia) and dried in air at 

room temperature. All three electrodes were immersed in 1M NaOH solution for all 

electrochemical analyses such as cyclic voltammetry (CV), galvanostatic charge discharge 

(GCD) and electrochemical impedance spectroscopy (EIS). 

3. Results and Discussion 

3.1. Structural and morphological analysis 

The XRD plots of MWCNT, bare CoS2 and CoS2-MWCNT nanohybrids are shown in Fig. 2. 

The plot for bare cobalt sulphide shows several peaks indicating presence of mixed phases of 

CoS2 and Co9S8. The peaks at 2 value 27.5°, 32.3°,36.2°, 40.1°,46.4°, 54.9° represent 

reflections from (111), (002), (021), (112), (022) and (113) planes of cubic CoS2 nano-

crystals,  respectively according to amcsd file no. 98-004-1934 with lattice parameter 5.39Å. 

The peaks at 2 = 28.03°, 47.78° and 52.56° originate from the (311), (511) and (440) planes 
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of the hexagonal Co9S8 structure, respectively (amcsd file no. 000-5105). Cobalt sulphide is 

known to exist in a variety of stoichiometry resulting in a number of sulphides and hence 

hereafter we shall denote this mixed phase of  cobalt sulphide as CoxSy. Interestingly, the XRD 

plot of the CoS2-MWCNT nanohybrid shows peaks corresponding to cubic CoS2 structure 

suggesting MWCNTs’ strong influence to promote the growth of CoS2 phase only while 

preventing formation of all other sulphides (CoS, Co9S8).   

 

Fig. 2. X-ray diffractograms of MWCNT, bare CoxSy and CoS2-MWCNT nanohybrids. 

Fig. 2 also shows the characteristic diffraction peak of (002) plane of MWCNT in both 

pristine MWCNT and CoS2-MWCNT nanohybrid samples. The intense and sharp diffraction 

peaks of cobalt disulphide indicate good crystallinity of CoS2. The average crystallite size of 

CoS2 in the CoS2-MWCNT nanohybrid was calculated by Debye-Scherer equation, 

𝑑 = 𝑛𝜆/𝑐𝑜𝑠     (1) 

where d = average crystallite size, n= 0.9, λ= wavelength of the Cu Kα source (1.54Å), β= full 

width at half maximum (FWHM) of the most intense peak in radian, 2 is the = position of 

the most intense peak. The average crystallite size of CoS2–MWCNT as obtained from 

equation (1) taking the most intense peak (2 = 32.3°) into account is found to be 12 nm. 
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A typical FESEM image (Fig. 3) shows the presence of uniformly distributed CoS2 

nanoparticles well attached on the surfaces of the MWCNTs for the CoS2-MWCNT 

nanohybrid sample. The acid-treated MWCNTs possess some oxygen containing functional 

groups which serve as the host sites for the attachment of Co4+ ions (CoS2 nanoparticles) due 

to electrostatic attraction between Co4+ and negatively polarized oxygen groups. Elemental 

mapping data recorded on a random region of the sample shows presence of C, O, Co and S 

atoms over the entire area suggesting uniform distribution of these elements within the CoS2-

MWCNT sample in accordance with the uniformly distributed CoS2 nanoparticles well 

attached on the MWCNT network.  

 

Fig. 3. FESEM image of CoS2-MWCNT(3) nanohybrid along with the elemental mapping 

data corresponding to a random area of the  sample. 

The HRTEM image of CoS2-MWCNT nanohybrid in Fig. 4(a) shows the presence of CoS2 

nanoparticles well attached to MWCNT walls, with no free CoS2 particles visible. Fig. 4(b) 

depicts the particle size distribution of CoS2 nanoparticles using ImageJ software and one can 

see that the mean diameter of the particles is ~9 nm which is in good agreement with that 

measured from XRD (12 nm). The nanosized CoS2 particles have large surface to volume 

ratio and thus can generate large number of electrocatalytically active sites on the conducting  



 
 

8 
 

 

Fig. 4. (a) Typical HRTEM image, (b) size distribution of CoS2 nanoparticles, (c) HRTEM 

image at higher magnification showing lattice fringes, (d) SAED pattern and (e) EDX 

spectrum of the CoS2-MWCNT nanohybrid.  
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MWCNT network and is thus expected to improve the redox reaction kinetics for charge 

storage application. Fig. 4(c) demonstrates the presence of (021), (022), (002) and (113) 

planes of cubic CoS2 with lattice spacing of 2.47Å, 1.96Å, 2.75Å and 1.66Å, respectively 

(amcsd file no. 98-004-1934). The rings present in the SAED pattern (Fig. 4(d)) show the 

polycrystalline nature of the CoS2 nanoparticles and further confirms the presence of the 

same crystal planes of CoS2 structure as in Fig. 4(c). The lattice resolved HRTEM image (4c) 

and SAED pattern (4d) also confirm that the cobalt sulphide present in the composite sample 

is CoS2 phase only as lattice planes for other phases could not be identified.   

Fig. 4(e) shows a representative EDX spectrum obtained from the image in Fig 4(a) which 

clearly shows presence of sharp and strong peaks corresponding to C, Cu, Co, and S. The 

spectrum also shows a weak oxygen peak originating from the functional groups of 

MWCNTs whereas the strong copper peaks appear due to the copper grid in which the 

samples were desposited for imaging. The elemental signal averaged over several locations of 

the of CoS2-MWCNT nanohybrid sample revealed the presence of carbon (45.19 at.%), 

oxygen (14.21 at.%), cobalt (14.72 at.%) and sulphur (25.87 at.%). Thus the elemental data 

confirms formation of cobalt disulphide with stoichiometry closest to CoS2 (Co:S = 1:2) in 

accordance with our observations from XRD (Fig. 2).  

 

Fig. 5. N2 adsorption-desorption isotherm of (a) CoxSy (b) CoS2-MWCNT (3) 

 

Since specific surface area of the electrode material is known to play an important role in its 

ability to store charge, the N2 adsorption-desorption isotherms for bare CoxSy and the 

optimised CoS2-MWCNT (3) nanohybrid sample were recorded for comparison which are 

shown in Fig. 5. The plot shows typical hysteresis loop in the larger range of relative pressure 

(P/P0) illustrating that the nanohybrid has a typical mesoporous structure.35 The specific 
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surface areas of the CoS2-MWCNT (3) and bare CoxSy have been measured as 53.6 m2/gm 

and 28.3 m2/gm, respectively. The result is in good agreement with that of the FESEM image 

(Figure 4a) showing CoS2 particles with average size of 10 nm in the nanohybrid sample 

compared to much larger (>100 nm) size nanopetals of the bare CoxSy sample (Supporting 

Information, Figure S1). Small particle size of CoS2 and presence of MWCNT (with large 

surface area) results in overall increase of the surface area of the CoS2/MWCNT nanohybrid 

sample compared to that of bare CoxSy. Increase in the surface area facilitates increase in the 

number of active catalysis sites available for reaction which in turn increases the specific 

capacitance of the nanohybrid due to enhanced charge storage.  

 

3.2. Electrochemical Analysis 

 

Fig. 6. (a) CV curves at scan rate of 100 mV/sec recorded with various CoS2-MWCNT 

nanohybrid electrodes as well as with bare CoxSy and MWCNT, (b) histogram showing the 

redox peak current values, (c) CV curves of MWCNT-CoS2(3) electrode at different scan 

rates, and (d) plot of redox peak currents for CoS2-MWCNT(3) vs square root of scan rate  

and vs scan rate (inset). 
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The redox pair marked as R1 and O1 originates from reversible reaction between CoS2 and 

CoS2OH (Eq. 2) whereas that marked by R2 and O2 originates from the reaction between 

CoS2OH and CoS2O (Eq. 3) as shown in Fig. 6a, & 6b. The comparison of the CV curves 

recorded with MWCNT, CoxSy and CoS2-MWCNT nanohybrids as electrode reveals that 

with increase in MWCNT weight fraction in the CoS2-MWCNT nanohybrid the redox peak 

current values as well as the area under the CV curve increase (with the exception of CoS2-

MWCNT(4) sample) which can be attributed to the conductive pathways provided by the 

highly conducting MWCNT network. The peak current values for O1, R1, O2, R2 are 

separately plotted in Fig. 6b for a clear comparison where it is evident that the highest value 

of O1 and the lowest value of R1 are obtained for CoS2-MWCNT(3) sample. MWCNT 

provides effective conductive channels for intercalation and de-intercalation of ions which in 

turn facilitates fast charge transfer in the electrode/electrolyte interface resulting in improved 

overall electrochemical performance.  

𝑪𝒐𝑺𝟐 + 𝑶𝑯− ↔ 𝑪𝒐𝑺𝟐 𝑶𝑯 + 𝑯𝟐𝑶 + 𝒆− … … … … … … … … … … … … … … . (𝟐) 

𝑪𝒐𝑺𝟐 𝑶𝑯 + 𝑶𝑯− ↔ 𝑪𝒐𝑺𝟐 𝑶 + 𝑯𝟐𝑶 + 𝒆− … … … … … … … … … … … … … … (𝟑)  

 

However, Fig. 6 also shows that addition of MWCNT above a certain weight fraction (20% 

in this work), does not cause further improvement in the electrode performance as the peak 

current values deteriorate in the case of CoS2-MWCNT(4) sample from the values recorded 

for all other CoS2-MWCNT nanohybrid samples. Possible reason for this could be formation 

of agglomerates of MWCNTs which may hinder the fast charge diffusion. Another possible 

reason could be due to the reduction in the pseudocapacitance caused by the lowering of the 

CoS2 fraction. This is also evident from Fig. 6a where redox pairs are not prominently visible 

for CoS2-MWCNT(4) and the  peak current values are significantly reduced. A closer look at 

the CV curve of the pristine MWCNT reveals a rectangular shape with absence of any 

prominent redox peaks in accordance with the EDLC behaviour of carbon materials. This 

behaviour is observed even when the scan rate is varied from 5 mV/s to 100 mV/s as shown 

in the Supporting Information (Fig. S2). On the other hand, bare CoxSy exhibits two 

prominent redox pairs but very low peak current values at all scan rates presumably due to its 

poor electrical conductivity which can also be seen in the Supporting Information (Fig. S3). 

Among the whole set of CoS2-MWCNT nanohybrids CoS2-MWCNT(3) exhibits the best 

electrochemical behaviour with highest redox peak currents (Fig. 6b) and hence this sample 
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was further explored against varying scan rate (Fig. 6c). The curves show symmetric shape at 

all scan rates which indicating good reversibility and high rate performance.22 The positions 

of the oxidation and reduction peaks of CoS2-MWCNT(3) are slightly shifted to more 

positive and negative potential, respectively with increasing scan rate (Fig. 6c). This may 

result from the inability of ion diffusion process to achieve neutralization during faradaic 

redox reactions.35─36 Other CoS2-MWCNT nanohybrids also show similar CV curves as those 

of CoS2-MWCNT(3) at varying scan rates which are shown in Supporting Information (Fig. 

S4, S5, S6). Fig. 6(d) shows plot of the oxidation and reduction peak currents recorded for 

CoS2-MWCNT(3) sample against the scan rate and its square root. While the peak currents 

show a nonlinear relationship (inset in Fig. 6d) with scan rates, they exhibit an almost linear 

relationship with the square root of scan rate indicating a diffusion controlled redox reaction 

in the latter in accordance with the Randles-Sevcik equation 37 as given below:   

𝑖𝑝 = 2.69 × 105𝑛3/2𝐴𝐷
0

1/2
𝑉1/2 𝐶0       (4) 

where ip represents the peak current, n is the no. of electrons transferred, A  is the active 

surface area of the electrode, D0 is diffusion coefficient of the rate limiting protons, V  is the 

scan rate and C0 is the concentration of protons. On the other hand, for an adsorption 

controlled process the relation between peak current and scan rate should be linear which is 

not what we see in the inset of Fig. 6d.38 Thus, it is evident that the charge transfer kinetics is 

controlled by diffusion rather than adsorption.  

GCD measurements were carried out from 0.0 V to 0.9 V at 1 A/gm current density (Fig. 7a) 

to further evaluate the potential of CoS2-MWCNT nanohybrid as supercapacitor electrode. It 

can be seen that with increasing MWCNT weight fraction in CoS2-MWCNT nanohybrid the 

charge-discharge response improves only upto 20% MWCNT fraction above which the 

electrochemical performance of the nanohybrid got reduced. In addition to providing fast 

charge diffusion channels, MWCNT also restricts the agglomeration of CoS2 nanoparticles 

which synergistically contribute to improve the overall electrochemical response of the 

nanohybrid. However, for MWCNT weight fraction over and above 20% as in CoS2-

MWCNT(4) sample, a reduction in the GCD response occurs probably due to aggregation of 

MWCNTs and reduction of electrocatalytically active sites (less CoS2 particles) on the 

electrode which in turn leads to an increase in the charge transfer resistance and lowers the 

specific capacitance.  
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The specific capacitance of the synthesized nanohybrid electrode was calculated from the 

GCD curves as in Fig. 6a using the following equation:  

 𝐶𝑚 = 𝐼 × ∆𝑡/(𝑚 × ∆𝑉)       (5) 

where Cm is the specific capacitance in Farad/gram (F/g), I is the discharge current in Ampere 

(A), Δt is the time elapsed for discharging in sec.(s), m is the mass of the active material in g,  

ΔV is the change of potential during discharging in Volt (V).  

 

Fig. 7. (a) GCD curves recorded with current density of 1 A/g for various electrodes, (b) 

histogram plot of the calculated specific capacitance values for different electrodes,  (c) GCD 

curves of CoS2-MWCNT(3) electrode at different current densities and (d) Cycling ability of 

the CoS2-MWCNT(3) and bare CoxSy electrodes at 1 A/gm current density. 

The calculated values of the specific capacitance for all the samples using equation (4) are 

plotted as a histogram in Fig. 7(b). Among the synthesized set of nanohybrids CoS2-

MWCNT(3) exhibits the highest specific capacitance value of 1486 F/g at 1 A/gm current 

density which is almost 17 times and 11 times higher than that of MWCNT and bare CoxSy, 

Comment [U1]: Replace  
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respectively. The synergistic effect of conducting MWCNT and highly catalytic CoS2 results 

in such high capacitance value and improved electrochemical response. It can also be seen 

that CoS2-MWCNT(4) exhibits lower specific capacitance value of 1120 F/gm compared to 

that for CoS2-MWCNT(3) sample which is in good agreement with our previous CV results. 

Further, GCD response of CoS2-MWCNT(3) at different current densities ranging from 1A 

/gm to 5 A/gm are shown in Fig. 7c which shows a monotonous decrease in the charging and 

discharging time as expected. The GCD curves are very much symmetric in nature showing 

good reversibility with increasing current density. There is a very low IR  drop in the 

discharge curves which implies fast response and good charge transport at the 

electrode/electrolyte interface.39  

For a supercapacitor, long cycle life being one of the major requirements, its electrode must 

possess long cycling ability and chemical stability. To evaluate the cycling stability of the 

electrode materials, we have run GCD measurements for 10,000 continuous cycles at 1 A/gm 

current density and calculated the specific capacitances at certain intervals the results of 

which are presented in Fig. 7d. It is evident that even after 10,000 cycles CoS2-MWCNT(3) 

retains 80% of its initial specific capacitance value compared to only 44% retention for bare 

CoxSy electrode indicating the former’s superior stability. The increased stability of the 

composite electrode is a direct consequence of the incorporation of MWCNTs due to their 

excellent, chemical and mechanical stability.40 The relatively small (20%) loss in the specific 

capacitance value observed after 10,000 cycles is not surprising given the possibility of 

formation of localised aggregates as well as detachment of some CoS2 nanoparticles from the 

MWCNT network due to prolonged exposure of the film in liquid electrolyte.  

 

Fig. 8. (a) EIS curves of CoS2-MWCNT nanohybrids, bare CoxSy and MWCNT. (b) 

Experimental and fitted EIS plot of CoS2-MWCNT(3), and the equivalent electrical circuit.  
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EIS is one of the principal methods used to investigate the charge transfer mechanisms at 

electrode/electrolyte interface. EIS measurements were carried out on all samples in the 

frequency range of 105 Hz to 0.01 Hz. Nyquist plots of the nanohybrids, bare MWCNT and 

bare CoxSy all show semicircular curve in the high frequency region and a rising straight line 

in the lower frequency region (Fig. 8a). The intercepts of the semicircle with real impedance 

axis in higher frequency region indicate bulk resistance (Rs) of the electrochemical system 

which comprises of total resistance of the working electrode, solution resistance and 

resistance at electrode/electrolyte interface. The diameter of the semicircle is associated with 

the charge transfer resistance (Rct) and the rising straight line at low frequency region stands 

for Warburg impedance. Generally, a steeper slope indicates a better pseudocapacitive 

behaviour. For better understanding, the magnified views of the semicircular region of the 

curves in high frequency region are given in the Supporting information (Fig. S7). The Rs and 

Rct values of different nanohybrids, MWCNT and bare CoxSy are listed in Table 1.  

Table 1: Different resistance values for various samples as obtained from the Nyquist plots. 

Electrode Material Rs (ohm) Rct (ohm) 

MWCNT 2.79 15.52 

CoxSy 7.73 20.89 

CoS2-MWCNT  (1) 6.68 10.06 

CoS2-MWCNT  (2) 6.01 8.02 

CoS2-MWCNT  (3) 2.74 4.27 

CoS2-MWCNT  (4) 2.76 7.35 

 

It is evident from the above table that bare CoxSy has the highest Rs and Rct suggesting its 

poor charge transfer properties as expected due to its poor electrical conductivity. The 

synergistic effect of MWCNT and CoS2 gradually improves the ion diffusion mechanism 

which is evident from the lowering of the values of resistances from CoS2-MWCNT(1) to 

CoS2-MWCNT(3).  Again, amongst all samples tested, CoS2-MWCNT(3) exhibits the lowest 

bulk resistance and charge transfer resistance which signifies fastest charge transfer 

mechanism. Also the nearly vertical curve at low frequency region implies excellent 

pseudocapacitive behaviour of CoS2-MWCNT(3). The equivalent circuit of the Nyquist plot 

of CoS2-MWCNT(3) is shown in the inset of Fig. 8b. Rs is in series with double layer 

capacitance (C1) and faradaic pseudo capacitance (C2). W represents the Warburg impedance 
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and Rict and Rect denote charge transfer resistance in electrode/electrolyte interface and 

electron transfer resistance of the redox reactions, respectively. In case of CoS2-MWCNT(4) 

the resistances increased slightly from those of CoS2-MWCNT(3) in line with our findings of 

CV and GCD. 

Based on the above results and previous knowledge of the properties of MWCNT, the main 

features of the nanohybrid that are responsible for its improved electrochemical performance 

can be summarized as below: 

i) formation of a conducting network of MWCNTs results in faster charge transport that leads 

to lowering of the charge transfer resistance.  

ii) large surface area of MWCNTs results in an overall increase in the active area of the 

electrode making more catalytic reaction to occur. 

iii) high chemical and mechanical stability of MWCNT provides robustness to the electrode 

which in turn helps improving the cycle stability of the nanohybrid electrode. 

iv) relatively low molarity of the electrolyte used in this work (1M NaOH) ensures less 

corrosion of the electrode leading to high cycling stability. 

Table 2: Specific capacitance and cycle stability data for various cobalt sulphide based 

electrodes  

 

In order for the reader to understand the significance of this work with respect to other 

published work on cobalt sulphide based electrode, the main electrochemical parameters as 

measured by other groups and in this article have been compared in table 2.  The data in table 

2 clearly establishes CoS2-MWCNT(3) hybrid prepared in this work as the best electrode 

Electrode 

Material  
Name of 

the  

Electrolyte 

Electro-

lyte 

molarity 

Current 

Densi ty 

(A/gm) 

No. of 

Cycles 

(N) 

Initial  value 

of Speci fic 

Capacitance 

(F/gm) 

Specific 

Capacitance  

after N cycles  
(F/gm) 

% retention 

of speci fic 

capacitance 

after N cycles 

Co
9
S

8
 nanotubes

14 
KOH 6M 0.5  1000 285 246.5 86.5% 

Co
1 ̶  x 

S nanoflower
15 

KOH 2M  5 1000 666 548 81% 

CoS@rGO
41

  KOH 2M 1 3000 849 768.4 90.5% 

CoSx 
42

 KOH 6M 5  100 475 432.3 91% 

CoS2/MWCNT(3) 

This work 

NaOH 1M 1 10,000 1486 1188 80% 
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material amongst similar materials reported by others for a number of reasons as follows. 

First, the specific capacitance value obtained in this work is much higher than previous 

reports. Second, most of the previous researchers measured the specific capacitance in strong 

alkaline electrolyte (6M KOH) which often leads to corrosion of the electrode leading to poor 

stability. In the present work, the measurements were performed at relatively weak medium 

(1 M NaOH) to improve stability. Last but not the least, the cycle stability of the electrode 

materials listed in table 2 shows very high cycle stability of the CoS2/MWCNT(3) electrode 

synthesized in this work even after 10,000 cycles compared to only a couple of thousands 

cycles for the similar materials synthesized by other groups. Most of these reports only 

showed cyclic stability data for upto 1000 cycles only which raises some doubts over the 

stability of these materials at 10,000 cycles. As cycling stability is one of the most significant 

parameters for a good electrode material for supercapacitor, the best stability was obtained by 

X et al42 in which 90% charge was retained after 3000 cycles whereas all other works 

reported stability data for only 1000 cycles. However, commercial supercapacitors are 

expected to have very long cycle stability as the charge retention continues to drop even after 

thousands of charge-discharge cycles and this separates the present work from previous 

reports as we show upto 80% charge retention even after 10,000 cycles. This can be further 

understood from Figure 7(d) which shows a significant loss of specific capacitance value 

after 1000 cycles thus suggesting the importance of performing charge-discharge tests 

beyond 1000 cycles.  

4. Conclusions 

In summary, we show novel hydrothermal method to synthesise CoS2 nanoparticle (9 nm 

mean diameter) decorated MWCNT nanohybrids for application in supercapacitor electrode. 

Incorporation of MWCNT promotes growth of cobalt sulphide with CoS2 stoichiometry only 

and restricts the formation of all other stoichiometries such as CoS, Co9S8 etc. The 

electrochemical studies show that the synergistic effect due to high conductivity and large 

surface area of MWCNT and high catalytic activity of CoS2 leads to increase in the redox 

reaction and faster charge transfer processes compared to those of bare MWCNT and bare 

cobalt sulphide. This study also reveals the existence of an optimum weight fraction of 

MWCNT (20 wt%) for which the specific capacitance attains its highest value which 

decreases upon both increase and decrease of MWCNT fraction.  The CoS2-MWCNT(3) 

sample containing optimized weight fraction of MWCNT exhibits specific capacitance of 

~1486 F/gm at 1 A/gm current density which is much better than many previous reports on 
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similar electrode material. Further, the nanohybrid electrode showed excellent cycle stability 

with 80% retention of specific capacitance even after 10,000 cycles which is remarkable for 

potential application. 

 The improved electrochemical charge storage with the optimized CoS2-MWCNT(3) 

electrode is a direct consequence of the incorporation of highly conducting MWCNTs which 

form a conducting network for faster charge transport between the catalytically active CoS2 

nanoparticles. Further, the extremely high chemical and mechanical stability of MWCNT 

ensures exceptionally high cyclic stability. The results shown in this article establishes CoS2-

MWCNT(3) sample as a very promising electrode material for supercapacitor. 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at 

DOI:…. 

FESEM image of bare CoxSy, CV curves of bare MWCNT, bare CoxSy, and the three different 

CoS2/MWCNT composites (unoptimised) at various scan rates, and expanded EIS plot of the 

high frequency region. 
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