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Abstract
We study the problem of coloring a given graph using a small number of colors in several well-
established models of computation for big data. These include the data streaming model, the general
graph query model, the massively parallel communication (MPC) model, and the CONGESTED-
CLIQUE and the LOCAL models of distributed computation. On the one hand, we give algorithms
with sublinear complexity, for the appropriate notion of complexity in each of these models. Our
algorithms color a graph G using κ(G) · (1 + o(1)) colors, where κ(G) is the degeneracy of G: this
parameter is closely related to the arboricity α(G). As a function of κ(G) alone, our results are
close to best possible, since the optimal number of colors is κ(G) + 1. For several classes of graphs,
including real-world “big graphs,” our results improve upon the number of colors used by the various
(∆(G) + 1)-coloring algorithms known for these models, where ∆(G) is the maximum degree in G,
since ∆(G) > κ(G) and can in fact be arbitrarily larger than κ(G).

On the other hand, we establish certain lower bounds indicating that sublinear algorithms
probably cannot go much further. In particular, we prove that any randomized coloring algorithm
that uses at most κ(G) +O(1) colors would require Ω(n2) storage in the one pass streaming model,
and Ω(n2) many queries in the general graph query model, where n is the number of vertices in
the graph. These lower bounds hold even when the value of κ(G) is known in advance; at the same
time, our upper bounds do not require κ(G) to be given in advance.
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11:2 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

1 Introduction

Graph coloring is a fundamental topic in combinatorics and the corresponding algorithmic
problem of coloring an input graph with a small number of colors is a basic and heavily studied
problem in computer science. It has numerous applications, e.g., in scheduling [67, 49, 48],
air traffic flow management [15], frequency assignment in wireless networks [8, 56], and
register allocation [21, 26, 22]. More recently, vertex coloring has been used to compute seed
vertices in social networks that are then expanded to detect community structures in the
network [54].

Given an n-vertex graph G = (V,E), the task is to assign colors to the vertices in V

so that no two adjacent vertices get the same color. Doing so with the minimum possible
number of colors – called the chromatic number, χ(G) – is famously hard: it is NP-hard to
even approximate χ(G) to a factor of n1−ε for any constant ε > 0 [31, 68, 45]. In the face of
this hardness, it is algorithmically interesting to color G with a possibly suboptimal number
of colors depending upon tractable parameters of G. One such simple parameter is ∆, the
maximum degree: a trivial greedy algorithm colors G with ∆ + 1 colors in linear time.

We study graph coloring in a number of space-constrained and data-access-constrained
settings, including the data streaming model, a query model, and certain distributed comput-
ing models. As expected, coloring using the optimal number of colors is hard in these models.
Abboud et al. [1] show that coloring an n-vertex graph G with χ(G) colors in the p-pass
streaming setting requires Ω(n2/p) space, and checking c-colorability for 3 6 c < n requires
Ω((n− c)2/p) space. In such constrained settings, even finding a coloring with “about ∆”
colors is a fairly nontrivial problem that has been studied from various angles in a flurry
of research over the last decade [5, 10, 23, 24, 40, 59]. In a recent breakthrough (awarded
Best Paper at SODA 2019), Assadi, Chen, and Khanna [5] gave sublinear algorithms for
(∆ + 1)-coloring an input graph in such models.

In this work, we focus on colorings that use “about κ” colors, where κ = κ(G) is the
degeneracy of G, a parameter that improves upon ∆. It is defined as follows: κ = min{k :
every induced subgraph of G has a vertex of degree at most k}. Every graph is (κ + 1)-
colorable. Clearly, κ 6 ∆ and can be much smaller than ∆ for sparse graphs and real-world
graphs; see Table 2. Thus, our aim is to use fewer colors when (∆ + 1)-coloring might be
wasteful. A closely related parameter is α(G), the arboricity of the graph, which is the
minimum number of forests into which the set of edges of G can be partitioned. It is known
that α 6 κ < 2α. A number of works has studied the O(α)-coloring problem in distributed
computing models [11, 12, 35, 36, 47]. However, to the best of our knowledge, such coloring
algorithms were unknown in the data streaming and graph query models.

There is a simple greedy algorithm that runs in linear time and produces a (κ+1)-coloring;
see Section 3. However, just as before, when processing a massive graph under the constraints
of either the space-bounded streaming model or certain distributed computing models, the
inherently sequential nature of the greedy algorithm makes it infeasible. We overcome this
barrier with a very simple framework: decompose the graph into smaller subgraphs so as to
store all the blocks in our limited memory, and then run the greedy algorithm on each block.
We show that this basic framework (with careful implementation in the respective models)
suffices for obtaining the colorings we seek.

On the other hand, we give a number of lower bounds showing that, despite its simplicity,
our algorithmic framework does about as good a job as sublinear algorithms can. In particular,
no randomized algorithm can achieve (κ+O(1))-colorings without spending Ω(n2) space in
the streaming model or Ω(n2) queries in the query model.
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1.1 Our Results and Techniques
Algorithms. We give new graph coloring algorithms, parametrized by the degeneracy κ, in
the following models:
(1) the data streaming model, where the input is a stream of edge insertions and deletions

(i.e., a dynamic graph stream) resulting in the eventual graph to be colored and we are
limited to a work space of Õ(n) bits1, the so-called semi-streaming setting [32];

(2) the general graph query model [38], where we may access the graph using only neighbor
queries (what is the ith neighbor of x?) and pair queries (are x and y adjacent?);

(3) the massively parallel communication (MPC) model, where each of a large number
of memory-limited processors holds a sublinear-sized portion of the input data and
computation proceeds using rounds of communication;

(4) the congested clique model of distributed computation, where there is one processor
per vertex holding that vertex’s neighborhood information and each round allows each
processor to communicate O(logn) bits to a specific other processor; and

(5) the LOCAL model of distributed computation, where there is one processor per vertex
holding that vertex’s neighborhood information and each round allows each processor to
send an arbitrary amount of information to all its neighbors.

Table 1 Summary of our algorithmic results and basic comparison with most related previous
work. In the result marked (?), we require that κ = ω(log2 n).

Model Colors Complexity Parameters Reference

Streaming ∆ + 1 Õ(n) space, Õ(n
√

∆) post-processing time [5]

(one pass) κ+ o(κ) Õ(n) space, Õ(n) post-processing time this paper

Query ∆ + 1 Õ(n3/2) queries [5]

κ+ o(κ) Õ(n3/2) queries this paper

MPC ∆ + 1 O(1) rounds, O(n log3 n) bits per processor [5]

κ+ o(κ) O(1) rounds, O(n log2 n) bits per processor this paper

Congested ∆ + 1 O(1) rounds [23]

Clique O(κ) O(1) rounds [36]
κ+ o(κ)? O(1) rounds this paper

LOCAL
O(κn1/k) O(k) rounds, for k ∈

[
ω(log logn), O(

√
logn)

]
[47]

O(κn1/k logn) O(k) rounds, for k ∈
[
ω(
√

logn), o(logn)
]

this paper

Table 1 summarizes our algorithmic results and provides, in each case, a basic comparison
with the most related result from prior work. We give an elaborate account of the related
works in Section 2.

As we have noted, κ 6 ∆ in every case; indeed, κ could be arbitrarily better than ∆ as
shown by the example of a star graph, where κ = 1 whereas ∆ = n− 1. From a practical
standpoint, it is notable that in many real-world large graphs drawn from various application
domains – such as social networks, web graphs, and biological networks – the parameter κ
is often significantly smaller than ∆. See Table 2 for some concrete numbers. That said,
κ+ o(κ) is, in general, mathematically incomparable with ∆ + 1.

1 The Õ(·) notation hides factors polylogarithmic in n.
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Table 2 Statistics of several large real-world graphs taken from the application domains of social
networks, web graphs, and biological networks, showing that the degeneracy, κ, is often significantly
smaller than the maximum degree, ∆. Source: http://networkrepository.com [61].

Graph |V | |E| ∆ κ

soc-friendster 66M 2B 5K 305
fb-uci-uni 59M 92M 5K 17
soc-livejournal 4M 28M 3K 214
soc-orkut 3M 106M 27K 231
web-baidu-baike 2M 18M 98K 83
web-hudong 2M 15M 62K 529

Graph |V | |E| ∆ κ

web-wikipedia2009 2M 5M 3K 67
web-google 916K 5M 6K 65
bio-mouse-gene 43K 14M 8K 1K
bio-human-gene1 22K 12M 8K 2K
bio-human-gene2 14K 9M 7K 2K
bio-WormNet-v3 16K 763K 1K 165

A key contribution here is a conceptual idea and a corresponding technical lemma
underlying all our algorithms. We show that every graph admits a “small” sized low
degeneracy partition (LDP), which is a partition of its vertex set into “few” blocks such
that the subgraph induced by each block has low degeneracy, roughly logarithmic in n.
Moreover, such an LDP can be computed by a very simple and distributed randomized
algorithm: for each vertex, choose a “color” independently and uniformly at random from a
suitable-sized palette (this is not to be confused with the eventual graph coloring we seek;
this random assignment is most probably not a proper coloring of the graph). The resulting
color classes define the blocks of such a partition, with high probability. Theorem 8, the LDP
Theorem, makes this precise. Given an LDP, a generic graph coloring algorithm is to run
the aforementioned greedy algorithm on each block, using distinct palettes for the distinct
blocks. We obtain algorithms achieving our claimed results by suitably implementing this
generic algorithm in each computational model.

Lower Bounds. Recall that a graph with degeneracy κ admits a proper (κ+ 1)-coloring.
As Table 1 makes clear, there are several space-conscious (∆ + 1)-coloring algorithms known;
perhaps we could aim for improved algorithms that provide (κ+ 1)-colorings? We prove that
this is not possible in sublinear complexity in either the streaming or the query model. In
fact, we prove more. We show that distinguishing n-vertex graphs of degeneracy κ from those
with chromatic number κ+ 2 requires Ω(n2) space in the streaming model and Ω(n2) queries
in the general graph query model. This shows that it is hard to produce a (κ+ 1)-coloring
and in fact even to determine the value of κ. These results generalize to the problems of
producing a (κ + λ)-coloring or estimating the degeneracy up to ±λ; the corresponding
lower bounds are Ω(n2/λ2). Furthermore, the streaming lower bounds hold even in the
insertion-only model, where the input stream is simply a listing of the graph’s edges in some
order; compare this with our upper bound, which works even for dynamic graph streams.

A possible criticism of the above lower bounds for coloring is that they seem to depend
on it being hard to estimate the degeneracy κ. Perhaps the coloring problem could become
easier if κ was given to the algorithm in advance? We prove two more lower bounds showing
that this is not so: the same Ω(n2/λ2) bounds hold even with κ known a priori.

In the full version of this paper [18], we present a “combinatorial” lower bound that
addresses a potential criticism of our main algorithmic technique: the LDP. Perhaps a more
sophisticated graph-theoretic result, such as the Palette Sparsification Theorem of Assadi et
al. (see Section 2), could improve the quality of the colorings obtained? We prove that this
is not so: there is no analogous theorem for colorings with “about κ” colors.

http://networkrepository.com
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2 Related Work and Comparisons

Streaming and Query Models. Assadi et al. [5] give a one-pass streaming (∆ + 1)-coloring
algorithm that uses Õ(n) space (i.e., is semi-streaming) and works on dynamic graph streams.
They also give a (∆ + 1)-coloring algorithm in the general graph query model that makes
Õ(n3/2) queries. For these, they establish a beautiful Palette Sparsification Theorem: a
combinatorial result saying that choosing a random O(logn)-sized palette from {1, . . . ,∆+1}
for each vertex allows a compatible list coloring. While we do not get a similarly tight
combinatorial result – there isn’t one, as we just noted – we do achieve faster post-processing
time (Õ(n) versus their Õ(n

√
∆)) in the streaming setting and have a simpler post-processing

algorithm (greedy offline versus matching-based) in the query setting, while keeping other
complexity parameters the same (Table 1). These wins come at the price of a less tight result
– (1 + o(1))κ colors instead of the combinatorially optimal κ+ 1 – but of course our streaming
and query lower bounds show that such slack is necessary. Also, as noted before, we often
have κ� ∆ (Table 2).

For streaming lower bounds, Abboud et al. [1] show that coloring a graph G with χ(G)
colors requires Ω(n2/p) space in p passes. They also show that deciding c-colorability for
3 6 c < n (that might be a function of n) takes Ω((n− c)2/p) space in p passes. Furthermore,
any streaming algorithm that distinguishes between χ(G) 6 3c and χ(G) > 4c must use
Ω(n2/pc2) space. Another recent work on coloring in the streaming model is Radhakrishnan
et al. [60], which studies the problem of 2-coloring an n-uniform hypergraph.

In the query model, there are a number of works studying basic graph problems [39, 57, 25]
but, to the best of our knowledge, Assadi et al. were the first to study graph coloring in
this sense. Also, to the best of our knowledge, there was no previously known algorithm
for O(α)-coloring in the semi-streaming and graph query settings, whereas here we obtain
(κ+ o(κ))-colorings; recall the bound κ 6 2α− 1.

MPC and Congested Clique Models. The MapReduce framework [27] is extensively used
in distributed computing to process massive data sets. Beame, Koutris, and Suciu [16] defined
the Massively Parallel Communication (MPC) model to abstract out key theoretical features
of MapReduce; it has since become a widely used setting for designing and analyzing big
data algorithms, especially for graph problems. Another well studied model for distributed
graph algorithms is Congested Clique [50]. Behnezhad et al. [17] show that Congested Clique
is equivalent to the “semi-MPC model,” defined as MPC with O(n logn) bits of memory per
machine, thanks to simulations in both directions preserving the round complexity.

Harvey et al. [41] gave a (∆ + o(∆))-coloring algorithm in the MapReduce model; it
can be simulated in MPC using O(1) rounds and O(n1+c) space per machine for some
constant c > 0. The aforementioned paper of Assadi et al. [5] gives an O(1)-round MPC
algorithm for (∆+1)-coloring using O(n log3 n) bits of space per machine. Because this space
usage is ω(n logn), the equivalence result of Behnezhad et al. [17] does not apply and this
doesn’t lead to an O(1)-round Congested Clique algorithm. In contrast, our MPC algorithm
can be made to use only O(n logn) bits per machine and κ + o(κ) colors for graphs with
κ = ω(log2 n), and therefore leads to such a Congested Clique algorithm. Chang et al. [23]
gave an O(

√
log logn)-round MPC algorithm with o(n) space per machine and Õ(m) space

in total. Using the improved network decomposition results by Rozhon and Ghaffari [62], this
round complexity can be reduced to O(log log logn). We, however, focus on the quasi-linear
memory per machine regime.

ICALP 2020
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Graph coloring has recently garnered considerable attention in the Congested Clique
model. Parter [58] gave a (∆ + 1)-coloring algorithm using O(log log ∆ · log? ∆) rounds, later
improved to O(log? ∆) by Parter and Su [59]. Chang et al. [23] have recently improved this
to O(1) rounds. They use similar but more involved graph partitioning techniques than
us, as is probably necessary for a stringent (∆ + 1)-coloring. For low-degeneracy graphs,
our algorithm uses fewer colors than all these algorithms while achieving the best possible
asymptotic round complexity (O(1)). Parallel to our work, Ghaffari and Sayyadi [36] gave
an O(1)-round algorithm for the O(α)-coloring problem. Their analysis suggests that they
obtain a (cα)-coloring algorithm, where the constant c > 10. On the other hand, we get
a tight (1 + o(1))κ-coloring. Recall, again, that κ 6 2α − 1 (Fact 2). Hence, we have an
arguably simpler algorithmic framework achieving better results. The main novelty in our
techniques lies in choosing degeneracy as the key parameter (instead of arboricity, which
could lead to results looser by a factor of 2) and in the careful analysis that gives very
sharp – not just asymptotic – bounds on the number of colors. Our algorithm (only the
Congested Clique implementation), however, needs κ = ω(log2 n) or κ = O(1) to keep the
round complexity constant.

The LOCAL Model. There is a deep body of work on graph coloring in this model. Indeed,
graph coloring is one of the most central “symmetry breaking” problems in distributed
computing. We refer the reader to the monograph by Barenboim and Elkin [13] for an
excellent overview of the state of the art. Here, we shall briefly discuss only a few results
closely related to our contribution.

There is a long line of work on fast (∆ + 1)-coloring in the LOCAL model, in the
deterministic as well as the randomized setting [55, 10, 33, 51, 44, 3, 63, 14] culminating in
sublogarithmic time solutions due to Harris [40] and Chang et al. [24]. Barenboim and Elkin
[11, 12] studied fast distributed coloring algorithms that may use far fewer than ∆ colors: in
particular, they gave algorithms that use O(α) colors and run in O(αε logn) time on graphs
with arboricity at most α. Recall again that κ 6 2α− 1, so that a 2α-coloring always exists.
They also gave a faster O(logn)-time algorithm using O(α2) colors. Further, they gave a
family of algorithms that produce an O(tα2)-coloring in O(logt n+ log? n), for every t such
that 2 6 t 6 O(

√
n/α). Our algorithm for the LOCAL model builds on this latter result.

Kothapalli and Pemmaraju [47] focused on arboricity-dependant coloring using very
few rounds. They gave a randomized O(k)-round algorithm that uses O(αn1/k) colors for
2 log logn 6 k 6

√
logn and O(α1+1/kn1/k+3/k22−2k ) colors for k < 2 log logn. We extend

their result to the range k ∈
[
ω(
√

logn), o(logn)
]
, using O(αn1/k logn) colors.

Ghaffari and Lymouri [35] gave a randomized O(α)-coloring algorithm that runs in time
O(logn ·min{log logn, logα}) as well as an O(logn)-time algorithm using min{(2 + ε)α +
O(logn log logn), O(α logα)} colors, for any constant ε > 0. However, their technique does
not yield a sublogarithmic time algorithm, even at the cost of a larger palette.

The LDP Technique. As mentioned earlier, our algorithmic results rely on the concept of
a low degeneracy partition (LDP) that we introduce in this work. Some relatives of this
idea have been considered before. Specifically, Barenboim and Elkin [13] define a d-defective
(resp. b-arbdefective) c-coloring to be a vertex coloring using palette [c] such that every
color class induces a subgraph with maximum degree at most d (resp. arboricity at most b).
Obtaining such improper colorings is a useful first step towards obtaining proper colorings.
They give deterministic algorithms to obtain good arbdefective colorings [12]. However,
their algorithms are elaborate and are based on construction of low outdegree acyclic partial
orientations of the graph’s edges: an expensive step in our space-conscious models.
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Elsewhere (Theorem 10.5 of Barenboim and Elkin [13]), they note that a useful defective
(not arbdefective) coloring is easily obtained by randomly picking a color for each vertex;
this is then useful for computing an O(∆)-coloring.

Our LDP technique can be seen as a simple randomized method to produce an arbdefective
coloring. Crucially, we parametrize our result using degeneracy instead of arboricity and
give sharp – not just asymptotic – bounds on the degeneracy of each color class.

The Degeneracy Parameter. The parameter has been studied under several other names,
such as width [34], linkage [46] and Szekeres-Wilf number [66]. For a graph G, the number
κ(G) + 1 is often called the coloring number of G [28, 65]. It has also been extensively
studied as k-core number in different areas such as data streaming and parallel computing
[29], distributed systems [4], data mining [53], protein networks [6], and social networks[20].
Farach-Colton and Tsai [30] studied the parameter in the streaming model, and gave a
one-pass semi-streaming algorithm that approximates the degeneracy of an input graph
within a multiplicative factor of 1 + ε. Our lower bounds complement this result as we show
that computing the degeneracy κ exactly or more generally within a multiplicative factor of
(1 + κ−(1/2+γ)), for some constant γ, is not possible in the one-pass semi-streaming setting.

Other Related Work. Other work considers coloring in the setting of dynamic graph
algorithms: edges are inserted and deleted over time and the goal is to maintain a valid
vertex coloring of the graph that must be updated quickly after each modification. Unlike
in the streaming setting, there is no space restriction. Bhattacharya et al. [19] gave a
randomized algorithm that maintains a (∆ + 1)-coloring with O(log ∆) expected amortized
update time, later improved to O(1) by Henzinger and Peng [43]. Solomon and Wein [64]
studied the problem for low-arboricity graphs and gave an O(α log2 n)-coloring algorithm
with O(poly(log logn)) update time. Recently, Henzinger et al. [42] designed an O(α logn)-
coloring algorithm with O(log2 n) update time. Barba et al. [9] gave tradeoffs between the
number of colors used and update time. However, the techniques in these works do not seem
to apply in the streaming setting due to fundamental differences in the models.

Estimating the arboricity of a graph in the streaming model is a well studied problem.
McGregor et al. [52] gave a one pass (1+ε)-approximation algorithm to estimate the arboricity
of graph using Õ(n) space. Bahmani et al. [7] gave a matching lower bound. Our lower
bounds for estimating degeneracy are quantitatively much larger but they call for much
tighter estimates.

3 Preliminaries

Throughout this paper, graphs are simple, undirected, and unweighted. In considering a
graph coloring problem, the input graph will usually be called G and we will put n = |V (G)|.
The notation “log x” stands for log2 x. For an integer k, we denote the set {1, 2, . . . , k} by [k].

For a graph G, we define ∆(G) = max{deg(v) : v ∈ V (G)}. We say that G is k-degenerate
if every induced subgraph of G has a vertex of degree at most k. For instance, every forest is
1-degenerate and an elementary theorem says that every planar graph is 5-degenerate. The
degeneracy κ(G) is the smallest k such that G is k-degenerate. The arboricity α(G) is the
smallest r such that the edge set E(G) can be partitioned into r forests. When the graph G
is clear from the context, we simply write ∆, κ, and α, instead of ∆(G), etc.

We note two useful facts: the first is immediate and the second is an easy exercise.

I Fact 1. If an n-vertex graph has degeneracy κ, then it has at most κn edges.

ICALP 2020



11:8 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

I Fact 2. In every graph, the degeneracy κ and arboricity α satisfy α 6 κ 6 2α− 1.

In analyzing our algorithms, it will be useful to consider certain vertex orderings of graphs
and their connection with the notion of degeneracy, given by Lemma 5 below. Although the
lemma is folklore, it is crucial to our analysis, so we include a proof for completeness.

I Definition 3. An ordering of G is a list consisting of all its vertices (equivalently, a
total order on V (G)). Given an ordering C, for each v ∈ V (G), the ordered neighborhood
NG,C(v) := {w ∈ V (G) : {v, w} ∈ E(G), v C w}, i.e., the set of neighbors of v that appear
after v in the ordering. The ordered degree odegG,C(v) := |NG,C(v)|.

IDefinition 4. A degeneracy ordering of G is an ordering produced by the following algorithm:
starting with an empty list, pick a minimum degree vertex v (breaking ties arbitrarily), append
v to the end of the list, and recurse on G− v if it is nonempty.

I Lemma 5. G is k-degenerate iff there exists an ordering C such that odegG,C(v) 6 k for
all v ∈ V (G).

Proof. Suppose that G is k-degenerate. Let C= (v1, . . . , vn) be a degeneracy ordering. Then,
for each i, odegG,C(vi) is the degree of vi in the induced subgraph H := G \ {v1, . . . , vi−1}.
By definition, H has a vertex of degree at most k, so vi, being a minimum degree vertex in
H, must have degree at most k.

On the other hand, suppose that G has an ordering C such that odegG,C(v) 6 k for
all v ∈ V (G). Let H be an induced subgraph of G. Let v be the leftmost (i.e., smallest)
vertex in V (H) according to C. Then all neighbors of v in H in fact lie in NG,C(v), so
degH(v) 6 odegG,C(v) 6 k. Therefore, G is k-degenerate. J

A c-coloring of a graph G is a mapping ψ : V (G)→ [c]; it is said to be a proper coloring if
it makes no edge monochromatic: ψ(u) 6= ψ(v) for all {u, v} ∈ E(G). The smallest c such that
G has a proper c-coloring is called the chromatic number χ(G). By considering the vertices
of G one at a time and coloring greedily, we immediately obtain a proper (∆ + 1)-coloring.
This idea easily extends to degeneracy-based coloring.

I Lemma 6. Given unrestricted (“offline”) access to an input graph G, we can produce a
proper (κ+ 1)-coloring of G in linear time.

Proof. Construct a degeneracy ordering (v1, . . . , vn) of G and then greedily color the vertices
one by one in the order (vn, . . . , v1). Given a palette of size κ+ 1, by the “only if” direction
of Lemma 5, there will always be a free color for a vertex. J

Of course, the simple algorithm above is not implementable directly in “sublinear” settings,
such as space-bounded streaming algorithms, query models, or distributed computing models.
Nevertheless, we shall use it on suitably constructed subgraphs of our input graph.

We shall use the following form of the Chernoff bound.

I Fact 7. Let X be a sum of mutually independent indicator random variables. Let µ and δ
be real numbers such that EX 6 µ and 0 6 δ 6 1. Then, Pr [X > (1 + δ)µ] 6 exp

(
−µδ2/3

)
.

4 A Generic Framework for Coloring Algorithms

In this section, we give a generic framework for graph coloring that we later instantiate in
various computational models. As a reminder, our focus is on graphs G with a nontrivial
upper bound on the degeneracy κ = κ(G). Each such graph admits a proper (κ+ 1)-coloring;
our focus will be on obtaining a proper (κ+ o(κ))-coloring efficiently.
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As a broad outline, our framework calls for coloring G in two phases. The first phase
produces a low degeneracy partition (LDP) of G: it partitions V (G) into a “small” number of
parts, each of which induces a subgraph that has “low” degeneracy. This step can be thought
of as preprocessing and it is essentially free (in terms of complexity) in each of our models.
The second phase properly colors each part, using a small number of colors, which is possible
because the degeneracy is low. In later sections, we shall see that the low degeneracy allows
this second phase to be efficient in each of the models we consider.

4.1 A Low Degeneracy Partition
In this phase of our coloring framework, we assign each vertex a color chosen uniformly at
random from [`], these choices being mutually independent, where ` is a suitable parameter.
For each i ∈ [`], let Gi denote the subgraph of G induced by vertices colored i. We shall call
each Gi a block of the vertex partition given by (G1, . . . , G`). The next theorem, our main
technical tool, provides certain guarantees on this partition given a suitable choice of `.

I Theorem 8 (LDP Theorem). Let G be an n-vertex graph with degeneracy κ. Let k ∈ [1, n]
be a “guess” for the value of κ and let s > Cn logn be a sparsity parameter, where C is a
sufficiently large universal constant. Put

` =
⌈

2nk
s

⌉
, λ = 3

√
κ` logn , (1)

and let ψ : V (G) → [`] be a uniformly random coloring of G. For i ∈ [`], let Gi be the
subgraph induced by ψ−1(i). Then, the partition (G1, . . . , G`) has the following properties.
(i) If k 6 2κ, then w.h.p., for each i, the degeneracy κ(Gi) 6 (κ+ λ)/`.
(ii) W.h.p., for each i, the block size |V (Gi)| 6 2n/`.
(iii) If κ 6k6 2κ, then w.h.p., the number of monochromatic edges |E(G1)∪· · ·∪E(G`)| 6 s.
In each case, “w.h.p.” means “with probability at least 1− 1/poly(n).”

Proof. Notice that when k 6 (C/2) logn, the condition s > Cn logn results in ` = 1, so the
vertex partition is the trivial one-block partition, which obviously satisfies all the properties
in the theorem. Thus, in our proof, we may assume that k > (C/2) logn.

We start with Item ii, which is the most straightforward. From Equation (1), we have
` 6 4nk/s, so

n

`
>

s

4k >
Cn logn

4k >
C logn

4 .

Each block size |V (Gi)| has binomial distribution Bin(n, 1/`), so a Chernoff bound gives

Pr
[
|V (Gi)| >

2n
`

]
6 exp

(
− n3`

)
6 exp

(
−C logn

12

)
6

1
n2 ,

for sufficiently large C. By a union bound over the at most n blocks, Item ii fails with
probability at most 1/n.

Items i and iii include the condition k 6 2κ, which we shall assume for the rest of the
proof. By Equation (1) and the bounds s > Cn logn and k > (C/2) logn,

` 6

⌈
2k

C logn

⌉
6

4k
C logn 6

8κ
C logn ,
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whence, for sufficiently large C,

λ 6 3
√
κ · 8κ

C logn · logn 6 κ . (2)

We now turn to establishing Item i. Let C be a degeneracy ordering for G. For each
i ∈ [`], let Ci be the restriction of C to V (Gi). Consider a particular vertex v ∈ V (G) and
let j = ψ(v) be its color. We shall prove that, w.h.p., odegG,Cj

(v) 6 (κ+ λ)/`.
By the “only if” direction of Lemma 5, we have odegG,C(v) = |NG,C(v)| 6 κ. Now

note that

odegGj ,Cj
(v) =

∑
u∈NG,C(v)

1{ψ(u)=ψ(v)}

is a sum of mutually independent indicator random variables, each of which has expectation
1/`. Therefore, E odegGj ,Cj

(v) = odegG,C(v)/` 6 κ/`. Since λ 6 κ by Equation (2), we may
use the form of the Chernoff bound in Fact 7, which gives us

Pr
[
odegGj ,Cj

(v) > κ+ λ

`

]
6 exp

(
−κ
`

λ2

3κ2

)
= exp

(
−9κ` logn

3κ`

)
6

1
n3 ,

where the equality follows from Equation (1). In words, with probability at least 1−1/n3, the
vertex v has ordered degree at most (κ+ λ)/` within its own block. By a union bound, with
probability at least 1− 1/n2, all n vertices of G satisfy this property. When this happens,
by the “if” direction of Lemma 5, it follows that κ(Gi) 6 (κ+ λ)/` for every i.

Finally, we take up Item iii, which is now straightforward. Assume that the high
probability event in Item i occurs. Then, by Fact 1,

|E(G1) ∪ · · · ∪ E(G`)| 6
∑̀
i=1

κ(Gi) |V (Gi)| 6
κ+ λ

`

∑̀
i=1
|V (Gi)| =

n(κ+ λ)
`

6
2nκ
`

6 s ,

where the final inequality uses the condition κ 6 k and Equation (1). J

It will be convenient to encapsulate the guarantees of this theorem in a definition.

I Definition 9. Suppose graph G has degeneracy κ. A vertex partition (G1, . . . , G`) sim-
ultaneously satisfying the degeneracy bound in Item i, the block size bound in Item ii, and
the (monochromatic) edge sparsity bound in Item iii in Theorem 8 is called an (`, s, λ)-LDP
of G.

It will turn out that an (`, s, λ)-LDP leads to a proper coloring of G using at most κ+λ+`
colors. An instructive setting of parameters is s = Θ((n logn)/ε2), where ε is either a small
constant or a slowly vanishing function of n, such as 1/ logn. Then, a quick calculation
shows that when an accurate guess k ∈ [κ, 2κ] is made, Theorem 8 guarantees an LDP that
has edge sparsity s = Õ(n) and that leads to an eventual proper coloring using (1 +O(ε))κ
colors. When ε = o(1), this number of colors is κ+ o(κ).

Recall that the second phase of our coloring framework involves coloring each Gi separately,
exploiting its low degeneracy. Indeed, given an (`, s, λ)-LDP, each block Gi admits a proper
(κ(Gi) + 1)-coloring. Suppose we use a distinct palette for each block; then the total number
of colors used is∑̀

i=1
(κ(Gi) + 1) 6 `

(
κ+ λ

`
+ 1
)

= κ+ λ+ ` , (3)
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as claimed above. Of course, even if our first phase random coloring ψ yields a suitable LDP,
we still have to collect each block Gi or at least enough information about each block so as
to produce a proper (κ(Gi) + 1)-coloring. How we do this depends on the precise model of
computation; see Sections 5 and 6 here and the full version [18] for further instantiations.

4.2 Applications in Various Models
We now turn to the application of the framework in designing graph coloring algorithms in
specific models of computation for big data, where the focus is on utilizing space sublinear in
the size of the massive input graph. Such models are sometimes termed space-conscious.

In Section 5, we discuss the simulation of our framework in the streaming model. We
present a semi-streaming algorithm in the dynamic model, meaning that edges can be both
inserted and deleted. Our main result is captured in Theorem 10.

I Theorem 10. Set s = dε−2n logne, where ε > 0 is a parameter. There is a one-pass
algorithm that processes a dynamic (i.e., turnstile) graph stream using O(ε−2n log4 n) bits of
space and, with high probability, produces a proper coloring using at most (1 +O(ε))κ colors.
In particular, taking ε = 1/ logn, it produces a (κ+ o(κ))-coloring using Õ(n) space. Each
edge update is processed in Õ(1) time and end-of-stream post-processing takes Õ(n) time.

In Section 6, applying our framework to the general graph query model, we obtain:

I Theorem 11. Given query access to a graph G, there is a randomized algorithm that,
with high probability, produces a proper coloring of G using κ+ o(κ) colors. The algorithm’s
worst-case query complexity, running time, and space usage are all Õ(n3/2).

Besides this, we obtain algorithmic results in certain distributed models of computation,
namely MPC, Congested-Clique, and LOCAL models, where graph coloring is one of the
most heavily studied problems. Our results are stated below. See the full version of our
paper [18] for the corresponding discussions and proofs.

I Theorem 12. There is a randomized O(1)-round MPC algorithm that, given an n-vertex
graph G, outputs a (κ + o(κ))-coloring of G with high probability. The algorithm uses n
processors, each with O(n log2 n) bits of memory.

I Theorem 13. There is a randomized O(1)-round algorithm in the Congested Clique model
that, given a graph G, w.h.p. finds a (κ+O(κ3/4 log1/2 n))-coloring. For κ = ω(log2 n), this
gives a (κ+ o(κ))-coloring.

I Theorem 14. There is a randomized distributed algorithm in the LOCAL model that,
given an n-vertex graph G, an estimate of its arboricity α up to a constant factor, and a
parameter t such that 2 < t 6 O(

√
n/ logn), produces an O(tα logn)-coloring of G in time

O (logt n+ log? n).

5 Streaming Model

We turn to the most intensely studied space-conscious model: the data streaming model.
For graph problems, in the basic model, the input is a stream of non-repeated edges that
define the input graph G: this is called the insertion-only model, since it can be thought of
as building up G through a sequence of edge insertions. In the more general dynamic graph
model or turnstile model, the stream is a sequence of edge updates, each update being either

ICALP 2020



11:12 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

an insertion or a deletion: the net effect is to build up G. Our algorithm below will work in
this more general model. Later, in we shall give a corresponding lower bound that will hold
even in the insertion-only model (for a lower bound, this is a strength).

We assume that the vertex set V (G) = [n] and the input is a stream σ of at most
m = poly(n) updates to an initially empty graph. An update is a triple (u, v, c), where
u, v ∈ V (G) and c ∈ {−1, 1}: when c = 1, this token represents an insertion of edge {u, v}
and when c = −1, it represents a deletion. Let N =

(
n
2
)
and [[m]] = Z ∩ [−m,m]. It is

convenient to imagine a vector x ∈ [[m]]N of edge multiplicities that starts at zero and is
updated entrywise with each token. The input graph G described by the stream will be the
underlying simple graph, i.e., E(G) will be the set of all edges {u, v} such that xu,v 6= 0 at
the end. We shall say that σ builds up x and G.

Our algorithm makes use of two data streaming primitives, each a linear sketch. (We
can do away with these sketches in the insertion-only setting; see the end of this section.)
The first is a sketch for sparse recovery given by a matrix A (say): given a vector x ∈ [[m]]N
with sparsity ‖x‖0 6 t, there is an efficient algorithm to reconstruct x from Ax. The
second is a sketch for `0 estimation given by a random matrix B (say): given a vector
x ∈ [[m]]N , there is an efficient algorithm that takes Bx and computes from it an estimate
of ‖x‖0 that, with probability at least 1− δ, is a (1 + γ)-multiplicative approximation. It
is known that there exists a suitable A ∈ {0, 1}d×N , where d = O(t log(N/t)), where A
has column sparsity O(log(N/t)); see, e.g., Theorem 9 of Gilbert and Indyk [37]. It is also
known that there exists a suitable distribution over matrices giving B ∈ {0, 1}d′×N with
d′ = O(γ−2 log δ−1 logN(log γ−1 + log logm)). Further, given an update to the ith entry of
x, the resulting updates in Ax and Bx can be effected quickly by generating the required
portion of the ith columns of A and B.

Algorithm 1 One-Pass Streaming Algorithm for Graph Coloring via Degeneracy.

1: procedure Color(stream σ, integer k) . σ builds up x and G; k ∈ [1, n] is a guess for κ(G)
2: choose s, ` as in Equation (1) and t, d, d′, A,B as in the above discussion
3: initialize y ∈ [[m]]d and z ∈ [[m]]d

′
to zero

4: foreach u ∈ [n] do ψ(u)← uniform random color in [`]
5: foreach token (u, v, c) in σ do
6: if ψ(u) = ψ(v) then y← y + cAu,v; z← z + cBu,v

7: if estimate of ‖w‖0 obtained from z is > 5s/4 then abort
8: w′ ← result of t-sparse recovery from y . we expect that w′ = w
9: foreach i ∈ [`] do

10: Gi ← simple graph induced by {{u, v} : w′
u,v 6= 0 and ψ(u) = ψ(v) = i}

11: color Gi using palette {(i, j) : 1 6 j 6 κ(Gi) + 1}; cf. Lemma 6 . net effect is to color G

In our description of Algorithm 1, we use Au,v (resp. Bu,v) to denote the column of
A (resp. B) indexed by {u, v}. The algorithm’s logic results in sketches y = Aw and
z = Bw, where w corresponds to the subgraph of G consisting of ψ-monochromatic edges
only (cf. Theorem 8), i.e., w is obtained from x by zeroing out all entries except those
indexed by {u, v} with ψ(u) = ψ(v). We choose the parameter t = 2s, where s > Cn logn is
the sparsity parameter from Theorem 8, which gives d = O(s logn); we choose γ = 1/4 and
δ = 1/n, giving d′ = O(log3 n).

Notice that Algorithm 1 requires a guess for κ := κ(G), which is not known in advance. Our
final one-pass algorithm runs O(logn) parallel instances of Color(σ, k), using geometrically
spaced guesses k = 2, 4, 8 . . . . It outputs the coloring produced by the non-aborting run that
uses the smallest guess. This leads to this section’s main result (restated from Section 4.2).
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I Theorem 10. Set s = dε−2n logne, where ε > 0 is a parameter. There is a one-pass
algorithm that processes a dynamic (i.e., turnstile) graph stream using O(ε−2n log4 n) bits of
space and, with high probability, produces a proper coloring using at most (1 +O(ε))κ colors.
In particular, taking ε = 1/ logn, it produces a (κ+ o(κ))-coloring using Õ(n) space. Each
edge update is processed in Õ(1) time and end-of-stream post-processing takes Õ(n) time.

Proof. The coloring produced is obviously proper. Let us bound the number of colors used.
One of the parallel runs of Color(σ, k) in Algorithm 1 will use a value k = k? ∈ (κ, 2κ]. We
shall prove that, w.h.p., (a) every non-aborting run with k 6 k? will use at most (1 +O(ε))κ
colors, and (b) the run with k = k? will not abort.

We start with (a). Consider a particular run using k 6 k?. By Item i of Theorem 8, each
Gi has degeneracy at most (κ+ λ)/`; so if w is correctly recovered by the sparse recovery
sketch (i.e., w′ = w in Algorithm 1), then each Gi is correctly recovered and the run uses at
most κ+ λ+ ` colors, as in Equation (3). Using the values from Equation (1), this number
is at most (1 + O(ε))κ. Now, if the run does not abort, then the estimate of the sparsity
‖w‖0 is at most 5s/4. By the guarantees of the `0-estimation sketch, the true sparsity is at
most (5/4)(5s/4) < 2s = t, so, w.h.p., w is indeed t-sparse and, by the guarantees of the
sparse recovery sketch, w′ = w. Taking a union bound over all O(logn) runs, the bound on
the number of colors holds for all required runs simultaneously, w.h.p..

We now take up (b). Note that ‖w‖0 is precisely the number of ψ-monochromatic edges
in G. By Item iii of Theorem 8, we have ‖w0‖ 6 s w.h.p. By the accuracy guarantee of the
`0-estimation sketch, in this run the estimate of ‖w‖0 is at most 5s/4 w.h.p., so the run does
not abort.

The space usage of each parallel run is dominated by the computation of y, so it is
O(d logm) = O(s logn logm) = O(ε−2n log3 n), using our setting of s and the assumption
m = poly(n). The claims about the update time and post-processing time follow directly
from the properties of a state-of-the-art sparse recovery scheme, e.g., the scheme based on
expander matching pursuit given in Theorem 9 of Gilbert and Indyk [37]. J

6 Query Model

We now turn to the general graph query model, a standard model of space-conscious algorithms
for big graphs where the input graph is random-accessible but the emphasis is on the
examining only a tiny (ideally, sublinear) portion of it; for general background see Chapter 10
of Goldreich’s book [38]. In this model, the algorithm starts out knowing the vertex set [n]
of the input graph G and can access G only through the following types of queries.

A pair query Pair({u, v}), where u, v ∈ [n]. The query returns 1 if {u, v} ∈ E(G) and 0
otherwise. For better readability, we shall write this query as Pair(u, v).
A neighbor query Neighbor(u, j), where u ∈ [n] and j ∈ [n−1]. The query returns v ∈ [n]
where v is the jth neighbor of u in some underlying fixed ordering of vertex adjacency
lists; if deg(v) < j, so that there does not exist a jth neighbor, the query returns ⊥.

Naturally, when solving a problem in this model, the goal is to do so while minimizing the
number of queries.

6.1 Sublinear Algorithm
By adapting the combinatorial machinery from their semi streaming algorithm, Assadi
et al. [5] gave an Õ(n3/2)-query algorithm for finding a (∆+1)-coloring. Our LDP framework
gives a considerably simpler algorithm using κ+o(κ) colors, where κ := κ(G). We remark here
that Õ(n3/2) query complexity is optimal (up to polylogarithmic actors), as Assadi et al. [5]
proved a matching lower bound for any (c ·∆)-coloring algorithm, for any constant c > 1.
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I Theorem 11. Given query access to a graph G, there is a randomized algorithm that,
with high probability, produces a proper coloring of G using κ+ o(κ) colors. The algorithm’s
worst-case query complexity, running time, and space usage are all Õ(n3/2).

Proof. The algorithm proceeds in two stages. In the first stage, it attempts to extract
all edges in G through neighbor queries alone, aborting when “too many” queries have
been made. More precisely, it loops over all vertices v and, for each v, issues queries
Neighbor(v, 1),Neighbor(v, 2), . . . until a query returns ⊥. If this stage ends up making
3n3/2 queries (say) without having processed every vertex, then it aborts and the algorithm
moves on to the second stage. By Fact 1, if κ 6

√
n, then this stage will not abort and the

algorithm will have obtained G completely; it can then (κ+ 1)-color G (as in Lemma 6) and
terminate, skipping the second stage.

In the second stage, we know that κ >
√
n. The algorithm now uses a random coloring ψ

to construct an (`, s, λ)-LDP of G using the “guess” k =
√
n, with s = Θ(ε−2n logn) and

`, λ given by Equation (1). To produce each subgraph Gi in the LDP, the algorithm simply
makes all possible queries Pair(u, v) where ψ(u) = ψ(v). W.h.p., the number of queries made
is at most

1
2
∑
i∈[`]

|V (Gi)|2 6
`

2

(
2n
`

)2
6

2n2s

4nk = Θ
(
n3/2 logn

ε2

)
,

where the first inequality uses Item ii of Theorem 8. We can enforce this bound in the worst
case by aborting if it is violated.

Clearly, k 6 2κ, so Item i of Theorem 8 applies and by the discussion after Definition 9,
the algorithm uses (1 +O(ε))κ colors. Setting ε = 1/ logn, this number is at most κ+ o(κ)
and the overall number of queries remains Õ(n3/2), as required. J

7 Lower Bounds

Can we improve the guarantees of our algorithms so that they use at most κ + 1 colors,
rather than κ+ o(κ)? After all, every graph G does have a proper (κ(G) + 1)-coloring. Our
lower bounds answer this with a strong “No” in the data streaming and query models. If we
insist on a coloring that good, we would incur the worst possible space or query complexity:
Ω(n2). In fact, this holds even if κ is known to the algorithm in advance. Moreover, all our
streaming lower bounds hold even if the input stream consists of edge insertions alone.

Our lower bounds generalize to the problem of producing a (κ+ λ)-coloring. We show
that this requires Ω(n2/λ2) space or query complexity. Such generalizations are based on
the following Blow-Up Lemma.

I Definition 15. Let G be a graph and λ a positive integer. The blow-up graph Gλ is
obtained by replacing each vertex of G with a copy of the complete graph Kλ and replacing
each edge of G with a complete bipartite graph between the copies of Kλ at its endpoints.
More succinctly, Gλ is the lexicographical product G[Kλ].

I Lemma 16 (Blow-Up Lemma). For all graphs G and positive integers λ, c, if G has a
c-clique, then Gλ has a (cλ)-clique. Also, κ(Gλ) 6 (κ(G) + 1)λ− 1.

Proof. The claim about cliques is immediate. The bound on κ(Gλ) follows by taking a
degeneracy ordering of G and replacing each vertex v by a list of vertices of the clique that
replaces v in Gλ, ordering vertices within the clique arbitrarily. J
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(a) Gadget graph for Lemma 19.
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(b) Gadget graph for Theorem 21.

Figure 1 Gadget constructions for lower bounds.

Streaming Lower Bounds. Our streaming lower bounds use reductions from the index
problem in communication complexity. In the indexN problem, Alice is given a vector
x = (x1, . . . , xN ) ∈ {0, 1}N and Bob is given an index k ∈ [N ]. The goal is for Alice to send
Bob a (possibly random) c-bit message that enables Bob to output xk with probability at
least 2/3. The smallest c for which such a protocol exists is called the one-way randomized
communication complexity, R→(indexN ). As is well known, R→(indexN ) = Ω(N) [2].

We shall in fact consider instances of indexN where N = p2, for an integer p. Using
a canonical bijection between [N ] and [p] × [p], we reinterpret x as a matrix with entries
(xij)i,j∈[p], and Bob’s input as (y, z) ∈ [p]× [p]. We further interpret this matrix x as the
bipartite adjacency matrix of a (2p)-vertex balanced bipartite graph Hx. Such graphs Hx
will be key gadgets in the reductions to follow.

I Definition 17. For x ∈ {0, 1}p×p, a realization of Hx on a list (`1, . . . , `p, r1, . . . , rp) of
distinct vertices is a graph on these vertices whose edge set is {{`i, rj} : xij = 1}.

First Flavor: Degeneracy Not Known in Advance. To prove lower bounds of the first
flavor, we start by demonstrating the hardness of the abstract problem graph-dist.

I Definition 18 (graph-dist problem). Consider two graph families: G1 := G1(n, q, λ),
consisting of n-vertex graphs with chromatic number χ > (q + 1)λ, and G2 := G2(n, q, λ),
consisting of n-vertex graphs with κ 6 qλ− 1. Then graph-dist(n, q, λ) is the problem of
distinguishing G1 from G2 (note that G1 ∩ G2 = ∅): given an input graph G on n vertices,
the problem is to decide whether G ∈ G1 or G ∈ G2, with success probability at least 2/3.

We shall prove that graph-dist is “hard” in the insertion-only streaming setting and in the
query setting, thereby establishing that in these models it is hard to produce a (κ+λ)-coloring.
In fact, our proofs will show that it is just as hard to estimate the parameter κ; this goes to
show that the hardness of the coloring problem is not just because of the large output size.

I Lemma 19. Solving graph-dist(n, q, λ) in one pass requires Ω(n2/λ2) space. More
precisely, there is a constant c > 0 such that for every integer λ > 1 and every sufficiently
large integer q, there is a setting n = n(q, λ) for which every randomized one-pass streaming
algorithm for graph-dist(n, q, λ) requires at least cn2/λ2 bits of space.

Proof. Put p = q − 1. We reduce from indexN , where N = p2, using the following
plan. Starting with an empty graph on n = 3λp vertices, Alice adds certain edges based
on her input x ∈ {0, 1}p×p and then Bob adds certain other edges based on his input
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(y, z) ∈ [p]× [p]. By design, solving graph-dist(n, q, λ) on the resulting final graph reveals
the bit xyz, implying that a one-pass streaming algorithm for graph-dist requires at least
R→(indexN ) = Ω(N) = Ω(p2) = Ω(n2/λ2) bits of memory. The details follow.

First, consider λ = 1. We use the vertex set L]R]C (“]” denotes a disjoint union), where
L = {`1, . . . , `p}, R = {r1, . . . , rp}, and |C| = p. Alice introduces the edges of the gadget
graph Hx (from def. 17), realized on the vertices (`1, . . . , `p, r1, . . . , rp). Bob introduces all
possible edges within C ∪ {`y, rz}, except for {`y, rz}. Let G be the resulting graph (see
Figure 1a).

If xyz = 1, then G contains a clique on C ∪ {`y, rz}, whence χ(G) > p + 2. If, on the
other hand, xyz = 0, then we claim that κ(G) 6 p. By Lemma 5, the claim will follow if we
exhibit a vertex ordering C such that odegG,C(v) 6 p for all v ∈ V (G). We use an ordering
where L ∪ R \ {`y, rz} C `y C {rz} ∪ C and the ordering within each set is arbitrary. By
construction of Hx, each vertex in L∪R \{`y, rz} has total degree at most p. For each vertex
v ∈ {rz} ∪ C, we trivially have odegG,C(v) 6 p because |C| = p. Finally, since xyz = 0, the
vertex rz is not a neighbor of `y; so odegG,C(`y) = |C| = p. This proves the claim.

When λ > 1, Alice and Bob introduce edges so as to create the blow-up graph Gλ,
as in Definition 15. By Lemma 16, if xyz = 1, then Gλ has a (p + 2)λ-clique, whereas if
xyz = 0, then κ(Gλ) 6 (p+ 1)λ− 1. In the former case, χ(Gλ) > (p+ 2)λ = (q+ 1)λ, so that
Gλ ∈ G1(n, q, λ); cf. Definition 18. In the latter case, κ(Gλ) 6 qλ−1, so that Gλ ∈ G2(n, q, λ).
Thus, solving graph-dist(n, q, λ) on Gλ reveals xyz. J

Our coloring lower bounds are straightforward consequences of the above lemma.

I Theorem 20. Given a single randomized pass over a stream of edges of an n-vertex
graph G, succeeding with probability at least 2/3 at either of the following tasks requires
Ω(n2/λ2) space, where λ > 1 is an integer parameter:

(i) produce a proper (κ+ λ)-coloring of G;
(ii) produce an estimate κ̂ such that |κ̂− κ| 6 λ.

Furthermore, if we require λ = O
(
κ

1
2−γ

)
, where γ > 0, then neither task admits a semi-

streaming algorithm.

Proof. An algorithm for either task i and or task ii immediately solves graph-dist with
appropriate parameters, implying the Ω(n2/λ2) bounds, thanks to Lemma 19. For the
“furthermore” statement, note that the graphs in the family G2 constructed in the proof of
Lemma 19 have κ = Θ(n), so performing either task with the stated guarantee on λ would
require Ω(n1+2γ) space, which is not in Õ(n). J

I Remark. Together, Theorem 10 and Theorem 20 say that producing a (κ+ κ/ logO(1) n)-
coloring is possible in semi-streaming space whereas producing a (κ+O

(
κ

1
2−O(1)))-coloring

is not. We leave open the question of whether this gap can be tightened.

Second Flavor: Degeneracy Known in Advance. We now show that the coloring problem
remains just as hard even if the algorithm knows the degeneracy of the graph before seeing
the edge stream.

I Theorem 21. Given as input an integer κ, followed by a stream of edges of an n-vertex
graph G with degeneracy κ, a randomized one-pass algorithm that produces a proper (κ+ λ)-
coloring of G requires Ω(n2/λ2) bits of space. Furthermore, if we require λ = O

(
κ

1
2−γ

)
,

where γ > 0, then the task does not admit a semi-streaming algorithm.
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Proof. We reduce from indexN , where N = p2, using a plan analogous to the one used in
proving Lemma 19. Alice and Bob will construct a graph on n = 5λp vertices, using their
respective inputs x ∈ {0, 1}p×p and (y, z) ∈ [p]× [p].

First, we consider the case λ = 1. We use the vertex set L ] R ] L ] R ] C, where
L = {`1, . . . `p}, R = {r1, . . . , rp}, L = {`1, . . . , `p}, R = {r1, . . . , rp}, and |C| = p. Let x
be the bitwise complement of x. Alice introduces the edges of the gadget graph Hx (from
Definition 17), realized on L∪R, and the edges of Hx realized on L∪R. For ease of notation,
put ` := `y, r := rz, ` := `y, r := rz, and S := C ∪ {`, r, `, r}. Bob introduces all possible
edges within S, except for {`, r} and {`, r}. Let G be the resulting graph (see Figure 1b).

We claim that the degeneracy κ(G) = p+ 2. To prove this, we consider the case xyz = 1
(the other case, xyz = 0, is symmetric). By construction, G contains a clique on the p+ 3
vertices in C ∪ {`, r, `}; therefore, by definition of degeneracy, κ(G) > p+ 2. To show that
κ(G) 6 p + 2, it will suffice to exhibit a vertex ordering C such that odegG,C(v) 6 p + 2
for all v ∈ V (G). To this end, consider an ordering where V (G) \ S C ` C S \ {`} and the
ordering within each set is arbitrary. Each vertex v ∈ V (G) \S has odegG,C(v) 6 deg(v) 6 p

and each vertex v ∈ S \ {`} has odegG,C(v) 6
∣∣S \ {`}∣∣− 1 = p+ 2. As for the vertex `, since

xyz = 1− xyz = 0, by the construction in Definition 17, r is not a neighbor of `; therefore,
odegG,C(`) 6

∣∣S \ {`, r}∣∣ = p+ 2.
Let A be a streaming algorithm that behaves as in the theorem statement. Recall that we

are considering λ = 1. Since κ(G) = p+ 2 for every instance of indexN , Alice and Bob can
simulate A on their constructed graph G by first feeding it the number p+ 2, then Alice’s
edges, and then Bob’s. When A succeeds, the coloring it outputs is a proper (p+ 3)-coloring;
therefore it must repeat a color inside S, as |S| = p + 4. But S has exactly one pair of
non-adjacent vertices: the pair {`, r} if xyz = 0, and the pair {`, r} if xyz = 1. Thus, an
examination of which two vertices in S receive the same color reveals xyz, solving the indexN
instance. It follows that A must use at least R→(indexN ) = Ω(N) = Ω(p2) bits of space.

Now consider an arbitrary λ. Alice and Bob proceed as above, except that they simulate
A on the blow-up graph Gλ. Since G always has a (p+ 3)-clique and κ(G) = p+ 2, the two
halves of Lemma 16 together imply κ(Gλ) = (p+ 3)λ− 1. So, when A succeeds, it properly
colors Gλ using at most (p+ 4)λ− 1 colors. For each A ⊆ V (G), abusing notation, let Aλ
denote its corresponding set of vertices in Gλ (cf. Definition 15). Since |Sλ| = (p+ 4)λ, there
must be a color repetition within Sλ. Reasoning as above, this repetition must occur within
{`, r}λ when xyz = 0 and within {`, r}λ when xyz = 1. Therefore, Bob can examine the
coloring to solve indexN , showing that A must use Ω(N) = Ω(p2) = Ω(n2/λ2) space.

The “furthermore” part follows by observing that κ(Gλ) = Θ
(
|V (Gλ)|

)
. J

Query Lower Bounds. We prove lower bounds of the above two flavors for the graph query
model as well. We describe the proofs in the full version of the paper [18].

I Theorem 22. Given query access to an n-vertex graph G, succeeding with probability at
least 2/3 at either of the following tasks requires Ω(n2/λ2) queries, where λ > 1 is an integer:
(i) produce a proper (κ+ λ)-coloring of G;
(ii) produce an estimate κ̂ such that |κ̂− κ| 6 λ.

I Theorem 23. Given an integer κ and query access to an n-vertex graph G with κ(G) = κ,
an algorithm that, with probability 2/3, produces a proper (κ+ λ)-coloring of G must make
Ω(n2/λ2) queries.

ICALP 2020
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Combinatorial Lower Bound. Finally, we prove a combinatorial result that shows that
unlike (∆ + 1)-coloring, an analogous Palette Sparsification Theorem (as in Assadi et al. [5])
doesn’t exist for degeneracy-based coloring. Moreover, our result implies that an algorithm
based on such a technique must use at least as many colors as Algorithm 1. We discuss this
in detail in the full version of our paper [18].
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