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Abstract
We revisit the much-studied problem of space-efficiently estimating the number of triangles in a
graph stream, and extensions of this problem to counting fixed-sized cliques and cycles. For the
important special case of counting triangles, we give a 4-pass, (1± ε)-approximate, randomized
algorithm using Õ(ε−2 m3/2/T ) space, where m is the number of edges and T is a promised
lower bound on the number of triangles. This matches the space bound of a recent algorithm
(McGregor et al., PODS 2016), with an arguably simpler and more general technique. We
give an improved multi-pass lower bound of Ω(min{m3/2/T,m/

√
T}), applicable at essentially

all densities Ω(n) 6 m 6 O(n2). We prove other multi-pass lower bounds in terms of various
structural parameters of the input graph. Together, our results resolve a couple of open questions
raised in recent work (Braverman et al., ICALP 2013).

Our presentation emphasizes more general frameworks, for both upper and lower bounds. We
give a sampling algorithm for counting arbitrary subgraphs and then improve it via combinatorial
means in the special cases of counting odd cliques and odd cycles. Our results show that these
problems are considerably easier in the cash-register streaming model than in the turnstile model,
where previous work had focused (Manjunath et al., ESA 2011; Kane et al., ICALP 2012). We
use Turán graphs and related gadgets to derive lower bounds for counting cliques and cycles,
with triangle-counting lower bounds following as a corollary.
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1 Introduction

Algorithms for analyzing large graphs have been the topic of two decades of intense research.
The theory of such algorithms encompasses two large disciplines: streaming algorithms [25, 14],
where the input graph is presented as a stream of edges that must be read sequentially,
in one or more passes, using space sublinear in the total input size; and property-testing
algorithms [16, 17], where the input graph may be randomly accessed and the goal is to
decide whether it satisfies some property or is far from doing so, while reading a sublinear
fraction of the input. This paper is concerned with streaming algorithms.

∗ In this extended abstract, several proofs are either shortened or omitted, and a few theorems and lemmas
are stated in not-quite-full detail. We refer the interested reader to the full version of this paper.
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11:2 Counting Triangles and Other Substructures in Graph Streams

Table 1 Results from prior work. See the discussion at the start of Section 1.1.

Problem Space Remarks Source

Triangle
counting
(tri-cnt)

Õ
(
mn/T

)2 – [3]
Õ
(
m∆2/T

)
∆ = maximum degree [19]

Õ
(
mn/T

)
n known a priori [8]

Õ
(
m3/T 2) turnstile [21]

Õ
(
m∆/T

)
∆ = maximum degree [28]

Õ
(
mγ/T

)
γ = tangle coefficient (Section 2) [28]

Õ
(
mJ/T +m/

√
T
)

J = max # triangles containing an edge [27]
C + Õ

(
P2/T

)
C = vertex cover, P2 = # of 2-paths [15]

Õ
(
m/

√
T
)

dependence on ε is 1/ε2.5 [11]
Õ
(
m3/2/T

)
multi-pass [24]

Õ
(
m/

√
T
)

multi-pass [24]

Ω
(
n2) one pass, T = 1 [3]

Ω
(
n/T

)
multi-pass, T < n [19]

Ω
(
m
)

one pass, m ∈ [c1n, c2n
2], T < n [7]

Ω
(
m/T

)
multi-pass [7]

Ω
(
m3/T 2) one pass, optimal [22]

Ω
(
m/T 2/3) multi-pass [11]

Ω
(
m/

√
T
)

multi-pass, for m = Θ(n
√
T ) [11]

Clique counting
(clq-cnth)

Õ
(
mh(h−1)/2/T 2) turnstile [21]
Õ
(
η(h)/T

)
η(h) = max{mα∆h−2α : α ∈ {1, bh/2c}} [28]

Cycle counting
(cyc-cnth) Õ

(
mh/T 2) turnstile [23]

Specifically, this paper is about the subgraph-counting problem, which asks for an
(approximate) count of the number of occurrences of a particular constant-sized subgraph,
H, in an input graph, G, which has n vertices and m edges. We denote this problem
sub-cntH . After giving a basic algorithm for sub-cntH , we provide improvements (in terms
of space usage) for special classes of subgraphs, namely, when H is either an h-clique Kh (the
clique-counting problem, or clq-cnth) or an h-cycle Ch (the cycle-counting problem,
or cyc-cnth). We also give upper and lower bounds, several of them optimal, for the very
important special case of triangle-counting (henceforth, tri-cnt), when H is a triangle.

The number of triangles in a graph is a basic parameter of interest for a variety of reasons,
including social network analysis [26] and spam and fraud detection [4]; see [12, 31] for a more
thorough discussion of applications. The tri-cnt problem has been the focus of a remarkably
large number of papers. Nevertheless, the definitive upper and lower bounds on its space
complexity have not yet been obtained, leaving us with several mutually incomparable results
(Table 1). Notably, distinguishing a triangle-free graph from a graph containing one or
more triangles requires Ω(n2) space in general [3], ruling out unconditional sublinear-space
solutions. Therefore, nontrivial bounds must either assume some structural guarantees on
the input graph or provide space guarantees that depend on some structural parameter.

1.1 Our Results and Comparison with Prior Work
To set the context for our results, we summarize the salient related results from prior work
(most of which are about tri-cnt) in Table 1. The ubiquitous parameter “T” represents a
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Table 2 Our main results. The Õ-notation hides 1/ε2 and logm factors; h is considered a constant.
The upper bounds use 4 passes for counting odd cliques and odd cycles (including triangles) and 2
passes in all other cases. The notations ∆, γ, ρ, and β are as discussed at the start of Section 1.1.

Problem Upper bounds Lower bounds Remarks
multi-pass one pass multi-pass

tri-cnt Õ
(
m3/2/T

)
–

Ω
(

min
{
m3/2/T, m/

√
T
})

optimal

Ω
(
m∆/T

)
optimal

Ω
(
mγ/T

)
optimal

Ω
(
m/ρ

)
optimal

clq-cnth Õ(mh/2/T ) Ω(mh/T 2) Ω
(

min
{
mh/2/T, m/T 1/(h−1)})

cyc-cnth
Õ(mh/2/T ) Ω(mh/2/T ) Ω

(
mh/2/T

)
even h

Õ(mh/2/T ) Ω(mh/T 2) Ω
(

min
{
mh/2/T, m/T 1/(h−1)}) odd h

sub-cntH Õ(mβ(H)/T ) – –

guaranteed lower bound on the number of copies of the target subgraph (triangle, Kh, or Ch)
in the input graph G. Some of the results involve additional graph parameters (definitions
in Section 2): the maximum degree ∆ = ∆(G), the triangle density ρ = ρ(G), the tangle
coefficient γ = γ(G) and, for the problem sub-cntH , the edge cover number β = β(H).

In reading Table 1, note that all upper bounds represent randomized algorithms that
provide (1± ε)-multiplicative approximations with high constant probability, and work in
one pass, except as noted. Their space usage involves a factor of logm and an ε-dependent
factor that, with one exception, equals 1/ε2. We omit these factors for clarity, hiding them
into an Õ(·) notation. Lower bounds are proven by studying the communication complexity
of distinguishing between “high” and “low” values of T . As can be seen, there are not many
multi-pass lower bounds in prior work and none that explain the form of any of the upper
bounds. Our lower bounds in this paper serve to fill this explanatory gap. Meanwhile, our
upper bounds demonstrate the power of using a small constant number of passes, rather
than one pass, for these problems. Table 2 summarizes our main contributions.

Our first upper bound is for sub-cntH . We give a 2-pass algorithm based on (implicitly)
sampling a suitable set of vertices and then counting copies of H induced by this set. Since
the edge cover number, β(H), equals dh/2e when H is either Kh or Ch, our general upper
bound for sub-cntH already implies the claimed upper bounds for clq-cnth and cyc-cnth
for even h. To improve these bounds in the case of odd h – in particular, tri-cnt – we bring
in some combinatorial ideas from Eden et al. [13], who were interested in a query complexity
version of tri-cnt; an overview of these ideas appears at the start of Section 3.2. We believe
that the resulting algorithms are conceptually novel in a streaming context.

Braverman et al. [7] introduced the parameter triangle density, ρ, defining it to be the
number of vertices that belong to some triangle in G. They conjectured a lower bound
of Ω(m/ρ) for multi-pass triangle-counting. Our Theorem 4.12 settles this conjecture
positively. Further, they posed the problem of designing a multi-pass algorithm for triangle-
counting with space complexity depending only on m and T (presumably they meant one
that beats the one-pass upper bound of Kane et al. [21]). We address this in Algorithm 2.
Pavan et al. [28] introduced the tangle coefficient, γ; see Section 2. Our results in Theorem 4.13
and Corollary 4.14 show that each of their one-pass upper bounds – namely, Õ(mγ/T ) and
O(m∆/T ) – is matched by a multi-pass lower bound.

STACS 2017



11:4 Counting Triangles and Other Substructures in Graph Streams

Jha et al. [18] gave an O(m/
√
T )-space algorithm for a variant of tri-cnt where the error

guarantee is additive; they also showed how to multiplicatively estimate a related quantity
called the clustering coefficient. While related, these results are not directly comparable to
ours, or to the ones in Table 1. Very recently, McGregor et al. [24] extended some ideas from
this work of Jha et al., obtaining an Õ(m/

√
T )-space algorithm for tri-cnt. In the same

paper, they also gave an Õ(m3/2/T )-space 4-pass1 algorithm for tri-cnt, which matches
the space bound of our algorithm for tri-cnt (Corollary 3.9). However, their algorithm
relies on a more complex primitive of fast `p sampling and is not immediately generalizable
to counting larger subgraphs. Our algorithm, which uses only basic sampling, is arguably
simpler, solves a more general problem, and is space-optimal for counting cliques and odd
cycles in some parameter regimes.

On the lower bound side, at a high level we proceed along the expected lines of reducing
from the index and set-disjointness communication problems, for one-pass and multi-pass
bounds, respectively. The meat of the work is in designing appropriate gadgets, mostly
based on Turán graphs, for the reductions. The most closely-related work is by Cormode
and Jowhari [11], who give multi-pass Ω(m/T 2/3) and Ω(m/

√
T ) lower bounds2 for tri-cnt.

Their constructions imply these lower bounds for specific settings of the edge-density and
number-of-triangles parameters. Our own lower bounds for tri-cnt (Corollary 4.11) apply
at all edge densities between m = Θ(n) and m = Θ(n2) and at all triangle counts between
T = 1 and T = m3/2−δ. Moreover, our bounds generalize to clq-cnt and cyc-cnt.

2 Preliminaries

Throughout this paper, our input graph will be G = (V,E), a simple undirected graph with
|V | = n and |E| = m. For a vertex v ∈ V , Nv denotes its set of neighbors and dv = |Nv|
denotes its degree. We put ∆ = maxv∈V dv. The input graph is presented as a stream of
edges (e1, e2, . . . , em) in some adversarial order. Each edge in E appears exactly once and
the stream only builds up the graph: there are no edge deletions. This is sometimes called
the cash-register streaming model.

For an edge e ∈ E, slightly abusing notation, Ne denotes the set of edges in E that are
adjacent to e. Let N>

e be the set of edges in Ne that come after e in the streaming order;
thus N>

e ⊆ Ne. Let T denote the set of triangles in G. We now define some special graph
parameters that are useful in the context of subgraph counting algorithms: the first two were
introduced in the context of the tri-cnt problem.

I Definition 2.1. The triangle density [7] ρ = ρ(G) is the number of vertices that belong to
some triangle in G. With T = |T |, we have Θ(T 1/3) 6 ρ 6 3T , where the lower and upper
bounds correspond to a clique and T vertex-disjoint triangles, respectively.

I Definition 2.2. Suppose T = |T | > 0. For τ ∈ T , let e(τ) be the edge in τ appearing
earliest in the stream order. The tangle coefficient [28] of the stream presentation of G,
denoted γ = γ(G), is defined as γ = (1/T )

∑
τ∈T |N

>
e(τ)|. Clearly, γ 6 2∆, since |N>

e(τ)| 6 2∆.

I Definition 2.3. An edge cover of a graph is a set of edges that covers all the vertices. For
a graph H, its edge cover number, denoted β(H), is the cardinality of its smallest edge cover.

1 McGregor et al. state their result as a 3-pass algorithm in a nonstandard model where vertex degrees
can be queried for free. In this model, our algorithm for tri-cnt would also use only 3 passes.

2 The Cormode–Jowhari lower bound of Ω(m/
√
T ), does not contradict our upper bound of Õ(m3/2/T )

because their lower bound holds only at m = Θ(n
√
T ) and T 6 n2 triangles.
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We fix a total ordering on the vertices of G according to their degrees. For vertices u
and v, let u ≺ v if either du < dv, or du = dv and u < v lexicographically. We record an
important observation made in Eden et al. [13].

I Fact 2.4 (Eden et al. [13]). For each u ∈ V , |{v ∈ Nu : u ≺ v}| 6
√

2m.

Let Q be some nonnegative function of an input stream that we wish to estimate. Let
ε, δ ∈ [0, 1] be certain parameters. If an algorithm A produces an estimate Q̂ for Q such
that Pr[Q̂ ∈ (1± ε)Q] > 1− δ, then A is called an (ε, δ)-estimator for Q. Our algorithms
will follow the common strategy of designing an unbiased “basic estimator” for Q – i.e., a
random variable with expectation Q – and bounding its variance. We note the following
widely-used lemma that combines several such basic estimators (computed in parallel) into
an (ε, δ)-estimator.

I Lemma 2.5 (Median-of-Means Improvement [2, 9]). Let X be the distribution of an unbiased
estimator for a real quantity Q. Let {Xij}i∈[t],j∈[k] be a collection of i.i.d. copies of X, where
t = c log(1/δ) and k = 3 Var[X]/(ε2E[X]2), for a certain universal positive constant c. Let
Z = mediani∈[t]

( 1
k

∑k
j=1 Xij

)
. Then Pr[Z ∈ (1± ε)Q] > 1− δ.

3 Algorithms for Counting Subgraphs

In this section we present multi-pass algorithms for sub-cntH , the problem of estimating the
number of occurrences of a fixed subgraph H of constant order. We first consider general H
and give a 2-pass algorithm. When specialized to Kh and Ch, this algorithm uses Õ(mdh/2e/T )
space. Later, for the case of odd h = 2` + 1, we introduce additional combinatorial ideas
to improve the exponent of m from `+ 1 to `+ 1

2 , at the cost of two additional passes. In
particular, this gives us an Õ(m3/2/T )-space tri-cnt algorithm.

3.1 A Sampling-Based Algorithm for Arbitrary Subgraphs
I Theorem 3.1. Let H be a graph of constant order whose edge cover number is β. There is an
(ε, 1/3)-estimator for sub-cntH that uses two passes and Õ(S) space, provided S = Ω(mβ/T ),
where T is the number of distinct occurrences of H in the input graph.

I Remark. The above bound could instead have been stated as Õ(mβ/T ) with T being a
promised lower bound on the number of distinct occurrences of H. Similar remarks apply to
our other upper bounds. We remind the reader that Õ(·) hides 1/ε2 and logm factors.

Proof. Let V (H) and E(H) be the vertex set and edge set of H, respectively. Let ξ be the
number of lists of distinct edges of H that form minimum-sized edge covers of H.3 Note that
β and ξ are constants, independent of the input graph G. Therefore the following algorithm,
which reads a stream of the m edges of G and computes an estimator X, uses Õ(1) space.

The analysis of Algorithm 1 is handled by the next two lemmas, which show that X is
an unbiased estimator and that its variance can be controlled. Let H1, H2, . . . ,HT be the
occurrences of H in G. Let Ti be an indicator random variable to denote whether Hi is
detected in Pass 2, at Line 4. Then X = mβ

ξ

∑T
i=1 Ti .

I Lemma 3.2. For each i, E[Ti] = ξ/mβ. Thus, E[X] = T .

3 E.g., if H is C4, with edges a, b, c, d in cyclic order, these lists are (a, c), (b, d), (c, a), and (d, b); so ξ = 4.
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11:6 Counting Triangles and Other Substructures in Graph Streams

Algorithm 1 Basic estimator for sub-cntH .
Pass 1:

1: select β edges {ei = {ui, vi}}βi=1 independently and u.a.r., using reservoir sampling
2: if {u1, v1, . . . , uβ , vβ} does not have exactly |V (H)| distinct vertices then
3: X ← 0; abort

Pass 2:
4: c ← number of distinct copies of H on {u1, v1, . . . , uβ , vβ} that contain each of
e1, . . . , eβ

5: X ← cmβ/ξ

I Lemma 3.3. Var[X] = O(mβT ).

Proof. By Lemma 3.2,

Var[X] 6 E
[
X2] = m2β

ξ2

 T∑
i=1

E
[
T 2
i

]
+
∑
i 6=j

E [TiTj ]

 = m2β

ξ2

 Tξ

mβ
+
∑
i6=j

E [TiTj ]

 . (1)

The term E[TiTj ], with i 6= j, is nonzero iff Hi and Hj can be simultaneously detected
at Line 4. Examining the logic of the algorithm, we see that this can happen only if
V (Hi) = V (Hj) and there is a set of β edges that forms a minimum edge cover of both Hi

and Hj . When these conditions hold, we shall say that Hi and Hj are neighbors. Since H
is a constant-order graph, each Hi has O(1) many neighbors: a crude bound, but one that
suffices for our purposes.

Thus, in the double summation in (1), only O(T ) terms are nonzero. For each nonzero
term, we have E [TiTj ] = Pr [Ti = 1 ∧ Tj = 1] 6 Pr[Ti = 1] = ξ

mβ
. Plugging this into (1), we

obtain our required estimate. J

To complete the proof of Theorem 3.1, we invoke Lemma 2.5 on the unbiased estimator X
and use the above bound on Var[X]. J

Let us specialize the above result to the problems clq-cnth and cyc-cnth. We have
β(Kh) = β(Ch) = dh/2e. Therefore, Theorem 3.1 gives us a 2-pass estimator that uses
Õ(S) space, provided S = Ω(mdh/2e/T ), where T is the number of h-cliques or h-cycles (as
appropriate) in the input graph. We shall later show, in Theorem 4.2, that this bound is
optimal for clq-cnth when h is even.

3.2 An Improved Algorithm for Odd Cliques and Odd Cycles
We now present an algorithm for clq-cnt2`+1, for constant `, improving the space bound
from Õ(m`+1/T ), as implied by Theorem 3.1, to Õ(m`+ 1

2 /T ). As before, all space bounds
are for an (ε, 1/3)-estimator.

Our algorithm builds on ideas from Pavan et al. [28] and Eden et al. [13]. The former
paper gives a streaming algorithm for estimating the number of triangles T in a graph. The
idea is to sample an edge uniformly at random from the stream, using reservoir sampling;
then sample one more edge uniformly at random from the neighborhood of previously chosen
edge; and finally, check whether these two edges are closed by any edge in the “future stream”
to form a triangle. This leads to an unbiased estimator for T with variance bounded by
O(m∆T ). This leads to an Õ(m∆/T )-space (ε, 1/3)-estimator, with the caveat that prior
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knowledge of ∆ is required. We build on their algorithm by improving the bound on the
variance of the unbiased estimator to O(m3/2T ). This gives an Õ(m3/2/T ) space estimator
for tri-cnt as well as removes the dependency on ∆. We reduce the variance of our estimator
by repeating the neighborhood sampling step for edges whose endpoints have “large” degree.

The challenge now is to reduce the number of triangles that an edge participates in. For
this, we use an idea of vertex ordering from Eden et al. [13], who tackled triangle counting
in a property testing model. They fix a total ordering on the vertices of G according to
their degrees. For vertices u and v, let u ≺ v if either du < dv, or du = dv and u < v

lexicographically. Now let τ = {v1, v2, v3} be a triangle in G with v1 ≺ v2 ≺ v3. Then τ

can be associated with (e1, v3) where e1 = {v1, v2}. Observe that each triangle τ in G is
uniquely associated with a distinct edge. Let the number of triangles associated with edge e
be Te. Clearly,

∑
e∈E(G) Te = T . From Fact 2.4, it follows that Te 6

√
2m. Since each edge

is associated with not-too-many triangles, we get a “strong” upper bound on the variance. In
fact the idea of vertex ordering has been proved to be useful for counting triangles in other
(offline) settings as well [30]. By invoking a result from Chiba et al. [10], we show that in
spite of such repetition the space usage for our estimator remains constant in expectation.
We in fact show that we can generalize this idea for larger cliques.

Now we formally describe our estimator for clq-cnt. We fix a total ordering of V (G) as
described above. Let τ = {v1, v2, . . . , v2`, v2`+1} induce a K2`+1 in G with v1 ≺ v2 ≺ . . . ≺
v2` ≺ v2`+1. We associate τ with (e1, e2, . . . , e`, v2`+1) where ei = {v2i−1, v2i}. Observe that
each K2`+1 in G is uniquely associated with ` distinct edges. Let the number of (2`+1)-cliques
associated with (e1, e2, . . . , e`) be T(e1,e2,...,e`). Then, we have the following simple lemma.

I Lemma 3.4. Each T(e1,e2,...,e`) 6
√

2m. Further,
∑

(e1,e2,...,e`)∈E(G)` T(e1,e2,...,e`) = T .

We shall also need the following combinatorial lemma, from Chiba and Nishizeki [10].

I Lemma 3.5 (Based on Lemmas 1(a) and 2 of [10]). Let G = (V,E) be a graph with n
vertices and m edges such that m = Ω(n). Then

∑
{u,v}∈E min{du, dv} = O

(
m3/2).

Algorithm 2 computes our basic estimator X.

I Theorem 3.6. Suppose the input graph G contains T copies of K2`+1. Then Algorithm 2
leads to an Õ(S)-space (ε, 1/3)-estimator for T when S = Ω(m`+ 1

2 /T ).4

Proof. Let E(e1,e2,...,e`) be the event that edges e1 = {u1, v1}, e2 = {u2, v2}, . . . , e` = {u`, v`}
are sampled at Line 1 and the algorithm does not abort in Pass 1. WLOG assume ui ≺ vi
for all i ∈ [`]. In the next two lemmas, we shall show that X is an unbiased estimator and
its variance can be controlled. Then we shall analyze the space usage of Algorithm 2.

I Lemma 3.7. For each E(e1,e2,...,e`), E[Zk | E(e1,e2,...,e`)] = T(e1,e2,...,e`). Thus, E[X] = T .

I Lemma 3.8. Var[X] = O(m`+1/2T ).

Proof. As in the previous lemma, E
[
Z2
k

∣∣ E(e1,e2,...,e`)
]

= du1T(e1,e2,...,e`). Next, note that
Zk1 and Zk2 are independent for k1 6= k2, even after conditioning on E(e1,e2,...,e`). Therefore

E[Zk1Zk2 | E(e1,e2,...,e`)] = E[Zk1 | E(e1,e2,...,e`)] · E[Zk2 | E(e1,e2,...,e`)] = T 2
(e1,e2,...,e`) . (2)

4 Please see the remark after Theorem 3.1 for an alternate interpretation of the space bound.
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11:8 Counting Triangles and Other Substructures in Graph Streams

Algorithm 2 Basic estimator for clq-cnt2`+1.
Pass 1:

1: select ` edges {ei = {ui, vi}}`i=1 independently and u.a.r., using reservoir sampling
2: if {u1, v1, . . . , u`, v`} does not have exactly 2` distinct vertices then
3: X ← 0; abort

Pass 2:
4: count dui and dvi for all i ∈ [`]

Pass 3:
5: r ←

⌈
min{du1 , dv1}

/√
m
⌉

6: by renaming vertices if needed, ensure that ui ≺ vi for all i ∈ [`]
7: for k ← 1 to r do
8: Zk ← 0; select a vertex wk from Nu1 u.a.r., using reservoir sampling

Pass 4:
9: compute dw1 , . . . , dwr
10: for k ← 1 to r do
11: if (e1, . . . , e`, wk) forms a K2`+1 and u1 ≺ v1 ≺ u2 ≺ . . . ≺ u` ≺ v` ≺ wk then
12: Zk ← du1

13: Y ← (1/r)
∑r
k=1 Zk

14: X ← m`Y

Now, using Lemma 3.7,

E
[
Y 2 | E(e1,e2,...,e`)

]
= 1
r2E

( r∑
k=1

Zk

)2
∣∣∣∣∣∣ E(e1,e2,...,e`)


= 1
r2

r∑
k=1

E
[
Z2
k

∣∣ E(e1,e2,...,e`)
]

+ 1
r2

∑
k1 6=k2

E
[
Zk1Zk2

∣∣ E(e1,e2,...,e`)
]

6
du1

r
T(e1,e2,...,e`) + T 2

(e1,e2,...,e`) =
√
mT(e1,e2,...,e`) + T 2

(e1,e2,...,e`) .

Therefore,

Var[X] = m2` Var[Y ] 6 m2`E[Y 2] = m2` · 1
m`

∑
(e1,e2,...,e`)∈E`

E
[
Y 2 ∣∣ E(e1,e2,...,e`)

]
6 m`+1/2

∑
(e1,...,e`)∈E`

T(e1,...,e`) +m`
∑

(e1,...,e`)∈E`
T 2

(e1,...,e`) = (1 +
√

2)m`+1/2T ,

where the final step uses both parts of Lemma 3.4. J

We return to the proof of Theorem 3.6. Invoking Lemma 2.5, we get an (ε, 1/3)-
approximation algorithm for T with space Õ(m`+ 1

2 ·B/T ) bits, where B is the space used by
Algorithm 2. To estimate B, note that Algorithm 2 keeps r =

⌈
min{du1 , dv1}

/√
m
⌉
many

neighboring vertices of u1. Recall that the edge {u1, v1} is chosen uniformly at random.
Hence the expected space usage is

1
m

∑
{u,v}∈E(G)

⌈
min{du, dv}√

m

⌉
6 1 + 1

m

∑
{u,v}∈E(G)

min{du, dv}√
m

= O(1) ,

where the final step uses Lemma 3.5.
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We can easily turn this expected space bound – call it B0 – into a worst-case space bound
that holds w.h.p. We simply abort the algorithm if we find that r would exceed 10B0 (say).
By Markov’s inequality, this ensures that B 6 10B0 = O(1), with probability at least 9

10 .
Thus, the overall space usage of our final estimator is Õ(m`+ 1

2 /T ), as required. J

Given the importance of the problem of counting triangles, it is worthwhile to record the
following immediate corollary of Theorem 3.6.

I Corollary 3.9. For a graph with n vertices, m edges, and T triangles, the tri-cnt problem
admits a four-pass Õ(S)-space (ε, 1/3)-estimator when S = Ω

(
m3/2/T

)
.

A similar improvement is possible for counting odd cycles of constant order. Details,
including a pseudocode description of the relevant algorithm, appear in the full paper.

I Theorem 3.10. For a graph with m edges, and T copies of C2`+1, the cyc-cnt2`+1 problem
admits a four-pass Õ(S)-space (ε, 1/3)-estimator when S = Ω

(
m`+ 1

2 /T
)
.

4 Lower Bounds

The remainder of this paper is concerned with lower bounds. Unless otherwise stated, all the
lower bounds are for randomized algorithms with success probabilities at least 2/3. We first
prove multi-pass lower bounds for clq-cnt and cyc-cnt. The latter turns out to require
different constructions for the cases of odd cycles and even cycles. In particular, this makes
the lower bound for cyc-cnth more restrictive when h is even. Next, we give single pass
lower bounds for clq-cnt and cyc-cnt: our lower bound for even cycles is weaker than
that for odd cycles. Finally, we focus on tri-cnt and establish tight space lower bounds
in terms of special structural parameters of the input graph, these parameters being ones
studied in previous works on triangle counting.

For some intuition on why even cycles are harder to deal with, we recall an important
result from extremal graph theory [6, 5]: for each integer ` > 2, ex(n, C2`) = O(`n1+1/`),
where ex(n,H) = max{m : ∃ graph on n vertices and m edges that does not contain H}.
Our lower bounds for clq-cnth and cyc-cnt2`+1 depend on constructing dense Kh-free
and C2`+1-free graphs (respectively). However, in view of the above bound, dense C2`-free
graphs do not exist, necessitating weaker constructions.

4.1 Multi-Pass Lower Bounds
The source of these lower bounds is the following promise version of the set-disjointness
problem that is of central importance in communication complexity theory. Alice and Bob
have two N -bit strings x and y respectively, each with exactly R ones. They want to
decide whether there exists an index i ∈ [N ] such that xi = 1 = yi. Let this problem be
denoted as disjRN . The randomized communication complexity R(disjRN ) = Ω(R) for all
R 6 N/2 [20, 29].

Our reductions from disjRN naturally lead to lower bounds on a clique detection problem,
where the goal is to distinguish input graphs G that have no h-cliques from ones that have
“many” h-cliques. Note that this provides a legitimate counterpart to our upper bounds, all
of which will safely report “0” on input graphs that are h-clique-free.

I Definition 4.1 (Clique and cycle detection problems). Consider two graph families: G1
consisting of h-clique-free graphs with n vertices and m edges; G2 consisting of graphs with

STACS 2017
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n vertices, m edges, and at least T h-cliques. Given a streamed input graph G ∈ G1 ∪ G2,
clq-detecth(p, n,m, T ) is the problem of deciding whether G ∈ G1 or G ∈ G2 with success
probability at least 2/3, using at most p passes over the edge stream. Analogously, we define
the cycle detection problem cyc-detecth(p, n,m, T ).

We shall prove the following two theorems about clique detection.

I Theorem 4.2. For each constant h and constant p, solving clq-detecth(p, n,m, T )
requires Ω

(
mh/2/T

)
bits of space, provided T = Ω(m(h−1)/2). Furthermore, this holds for

any m = Θ(nr), 1 6 r 6 2, and any T with Ω(m(h−1)/2) 6 T 6 m(h−1)/2+δ, where δ is an
arbitrary constant in [0, 1/2).

I Theorem 4.3. For each constant h, constant p, and for any T with 1 6 T 6 m(h−1)/2,
solving clq-detecth(p, n,m, T ) requires Ω

(
m/T 1/(h−1)) bits of space.

I Remark. Our lower bounds admit the possibility that there may exist more efficient
algorithms when the number of cliques is relatively small in the graph.

We note that McGregor et al. [24] have given two algorithms that match our lower bounds
when the subgraph of interest is a triangle (3-clique).

We present a detailed proof of Theorem 4.2 via reductions from disjN/3
N ; for the proof

of Theorem 4.3, see the full paper. Turán graphs play a central role. Recall that a Turán
graph is a complete multipartite graph where the blocks (of the vertex partition) are as close
as possible to being equal in size. Let T (n, t) denote an n-vertex t-partite Turán graph: it
has t− (n mod t) blocks with bn/tc vertices each and another (n mod t) blocks with dn/te
vertices each. As is well known, T (n, t) is the densest n-vertex graph that is Kt+1-free.

Proof of Theorem 4.2. We reduce disjN/3
N to clq-detecth(p, n,m, T ) by constructing a

certain graph that has some fixed edges, some edges depending on Alice’s input, x, and some
edges depending on Bob’s input, y.

Let H = (VH , EH) be a copy of the Turán graph T (b(h − 1), h − 1), with Bj denoting
the jth block in VH . By construction, |Bj | = b for all j ∈ [h− 1], and

EH =
⋃
i 6=j
{{u, v} : u ∈ Bi, v ∈ Bj} .

To this fixed graph H, we add N additional blocks of vertices, denoted V1, . . . , VN , with each
|Vi| = d. Then Alice and Bob add edge sets EAlice and EBob respectively, defined as follows

EAlice =
⋃

i:xi=1 ,
j∈[h−2]

{{u, v} : u ∈ Vi, v ∈ Bj} , EBob =
⋃

j:yj=1
{{u, v} : u ∈ Vj , v ∈ Bh−1} .

In words, for each index i with xi = 1, Alice constructs a complete bipartite subgraph
between Vi and Bj for all j ∈ [h− 2]. Similarly, for each index j with yj = 1, Bob creates a
complete bipartite subgraph between Vj and Bh−1. Let the final resulting graph be denoted
Gclique = (Vclique, Eclique) where Vclique = VH∪(V1∪. . .∪VN ), and Eclique = EH∪EAlice∪EBob.

I Lemma 4.4. The graph Gclique is Kh-free iff x and y are disjoint.

Proof. Observe that graphs GA = (Vclique, EH ∪ EAlice) and GB = (Vclique, EH ∪ EBob)
are both Kh-free. Thus, any h-clique in Gclique must of the form {v1, . . . , vh} where v1 ∈
B1, . . . , vh−1 ∈ Bh−1, and vh ∈ Vi for some i ∈ [N ]. But this implies that Vi is connected to
Bi for all i ∈ [h− 1]. Hence, xi = yi = 1. J
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Next, we record some important parameters of Gclique. First, |EH | =
(
h−1

2
)
b2 = Θ(b2).

Put n = |Vclique|, m = |Eclique|. Let TH denote the number of h-cliques in the graph. Recall
that, as an instance of disjN/3

N , each of x and y has exactly N/3 ones. Thus,

n = |VH |+
N∑
i=1
|Vi| = Θ(b) +Nd , m = |EH |+ |EAlice|+ |EBob| = Θ(b2) + Θ(Nbd) ,

TH = 0 , if x ∩ y = ∅ ; TH > bh−1d , otherwise .

Setting b = N and d = 1, we get n = Θ(N), m = Θ(N2), and TH > Nh−1 if x and y are not
disjoint. Suppose that there is an algorithm A that solves clq-detecth(p, n,m, T ) with
T = Nh−1 in only o(mh/2/T ) space, for some constant p. Then there exists a communication
protocol with cost o(R) that solves disjN/3

N . This gives us the main result of Theorem 4.2.
The proof so far applies to a graph with m = Θ(n2). To generalize it to arbitrary m

and T , assume m = Θ(nr), and T = m(h−1)/2+δ for some fixed r, δ such that 1 6 r 6 2,
and 0 6 δ < 1/2. We modify the construction of Gclique as follows (note that δ = 1/2 gives
the maximum possible number of h-cliques in a graph with m edges). We set b = Nq and
d = Nq−1 where q = 1/

(
r
2 − δr

)
. Now mark br/2 vertices in each block Bi and d

qr−2
2(q−1)

vertices in each set Vi as active vertices. Then we only add edges between active vertices of
each block. In the modified Gclique, we have

n = Θ(Nq) , m = Θ(br) + Θ(Nb r2 d
qr−2

2(q−1) ) = Θ(Nqr) ,

TH = 0 , if x ∩ y = ∅ ; TH > b(h−1) r2 d
qr−2

2(q−1) = Θ
(
N

hqr
2 −1

)
, otherwise .

Plugging in q = 1/
(
r
2 − δr

)
, we get TH = Θ

(
m(h−1)/2+δ) when x and y are not dis-

joint. The lower bound of Ω(N) for disjN/3
N implies a lower bound of Ω

(
mh/2/T

)
for

clq-detecth(p, n,m, T ) with T = m(h−1)/2+δ. J

In the full paper, we prove the following lower bounds for cyc-detecth(p, n,m, T ). The
first two, for odd h, are analogous to Theorem 4.2 and Theorem 4.3, except that Turán
graphs are replaced with an appropriate dense gadget. The third lower bound, for even h,
uses a different, “sparse” gadget, leading to a more restrictive lower bound.

I Theorem 4.5. For each odd constant h and constant p, solving cyc-detecth(p, n,m, T )
requires Ω

(
mh/2/T

)
bits of space, provided T = Ω(m(h−1)/2). Furthermore, this holds for

any m = Θ(nr), 1 6 r 6 2, and any T with Ω(m(h−1)/2) 6 T 6 m(h−1)/2+δ, where δ is an
arbitrary constant in [0, 1/2).

I Theorem 4.6. For each odd constant h, constant p, and for any T with 1 6 T 6 m(h−1)/2,
solving cyc-detecth(p, n,m, T ) requires Ω

(
m/T 1/(h−1)) bits of space.

I Theorem 4.7. For each even constant h and constant p, there is a family of instances
with m = Θ(n) and T = Θ(m(h−2)/2), such that solving cyc-detecth(p, n,m, T ) requires
Ω
(
mh/2/T

)
bits of space.

4.2 Single Pass Lower Bounds
We also obtain one-pass streaming lower bounds for the special subgraph counting problems
studied in the previous section. Proofs appear in the full paper. These bounds use reductions
from the indexN communication problem: Alice has a N -bit string, x, and Bob has an
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index z ∈ [N ]. The goal is to output the bit xz. The one-way randomized communication
complexity R→(indexN ) = Ω(N) [1].

Lower bounds for clq-cnt and cyc-cnt are obtained by studying the corresponding
detection problems clq-detect and cyc-detect. As before, cyc-detecth is treated
differently for odd h and even h. In each of these theorems, h is a constant.

Theorem 4.8 and Theorem 4.10 have the weakness that they apply only at carefully
chosen parameter settings, à la Theorem 4.7. A more thorough treatment of these theorems
is deferred to the full paper.

I Theorem 4.8. Solving clq-detecth(1, n,m, T ) requires Ω(mh−ε/T 2) space for every
small constant ε > 0.

I Theorem 4.9. For odd h, solving cyc-detecth(1, n,m, T ) requires Ω(mh/T 2) space.

I Theorem 4.10. For even h, cyc-detecth(1, n,m, T ) requires Ω
(
mh/2/T

)
space.

4.3 Special Lower Bounds for Triangle Counting
Finally, we present some tight multi-pass space lower bounds for tri-cnt in terms of
graph structural parameters introduced in previous works. Analogous to Definition 4.1,
we define tri-detect(p, n,m, T ), where the goal is to distinguish between graphs from
“no triangles” family and “at least T triangles” family. tri-detect-density(p, n,m, T, ρ),
tri-detect-tangle(p, n,m, T, γ), and tri-detect-degree(p, n,m, T,∆) are variants of
this problem where the triangle density ρ, the tangle coefficient γ, and maximum degree ∆
(respectively) are supplied as parameters.

In each of the following theorems, the number of passes, p, is a constant.
As a direct consequence of Theorem 4.2 and Theorem 4.3, we have the following basic

lower bound.

I Corollary 4.11. Solving tri-detect(p, n,m, T ) requires Ω
(

min
{
m/T 2/3,m/

√
T
})

space.

We can prove the following lower bounds for other variants of tri-detect by reductions
from disjRN using suitable gadgets. Details appear in the full paper.

I Theorem 4.12. Solving tri-detect-density(p, n,m, T, ρ) requires Ω(m/ρ) space.

I Theorem 4.13. Solving tri-detect-tangle(p, n,m, T, γ) requires Ω(mγ/T ) space.

I Theorem 4.14. Solving tri-detect-degree(p, n,m, T,∆) requires Ω(m∆/T ) space.

5 Concluding Remarks

In this paper, we have made several advances in our understanding of the space complexity
of subgraph counting problems. Nevertheless, a number of key problems remain open and
we end by highlighting some significant ones.

Consider the data streaming problems clq-cnth (for arbitrary constant h) and cyc-cnth
(for odd constant h), using a constant number of passes. In each case, we have given a
space lower bound of Ω

(
min

{
mh/2/T, m/T 1/(h−1)} ) and an upper bound of Õ(mh/2/T ).

Suppose that T , the actual number of cliques or cycles (as applicable) in the input graph,
is relatively small: to be precise, suppose that T 6 m(h−1)/2. In this regime, there is a
gap between the upper and lower bounds, as discussed after Theorem 4.3. Can we design
a constant-pass algorithm using Õ

(
m/T 1/(h−1)) space?
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We have proved a one-pass lower bound of Ω(mh/T 2) for clq-detecth. The best
known one-pass upper bound for clq-cnth is Õ

(
mh(h−1)/2/T 2) [21]. Bridging this gap

remains an open problem. The situation for cycle counting is better: the upper bound of
Õ
(
mh/T 2) for cyc-cnth [23] matches our lower bound up to a logarithmic factor, when

h is odd.
Can one improve the one-pass and multi-pass lower bounds for cyc-cnth for even h

to match those for odd h? Since it is impossible to construct a “dense” graph without
creating even cycles, one may hope that there exist more efficient algorithms for counting
even cycles. It would be very interesting to settle the problem either way.
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