research

Towards Tighter Space Bounds for Counting Triangles and Other Substructures in Graph Streams

Abstract

We revisit the much-studied problem of space-efficiently estimating the number of triangles in a graph stream, and extensions of this problem to counting fixed-sized cliques and cycles. For the important special case of counting triangles, we give a 4-pass, (1 +/- epsilon)-approximate, randomized algorithm using O-tilde(epsilon^(-2) m^(3/2) / T) space, where m is the number of edges and T is a promised lower bound on the number of triangles. This matches the space bound of a recent algorithm (McGregor et al., PODS 2016), with an arguably simpler and more general technique. We give an improved multi-pass lower bound of Omega(min{m^(3/2)/

    Similar works