7 research outputs found

    Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe

    Get PDF
    Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularlyPinus sylvestris,Picea abies, andPopulus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations

    FungalTraits:A user-friendly traits database of fungi and fungus-like stramenopiles

    Get PDF
    The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold

    Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature

    Full text link
    The unique fresh and hardened properties of high-performance self-consolidating concrete (HPSCC) led to an extensive application of this mixture in high-rise buildings. In this paper, the elevated temperature resistivity of 19 HPSCC mixtures incorporating binary and ternary blends of fly ash, silica fume, natural zeolite, and metakaolin was investigated. Changes in mass, compressive strength and ultrasonic pulse velocity (UPV) of the mixtures were measured at different temperatures (20, 300, 500, and 700 °C). A life cycle assessment (LCA) was also employed to explore the environmental performance of the mixtures. The test results revealed that in ambient temperature, ternary mixtures incorporating natural zeolite and fly ash or natural zeolite and metakaolin have lower compressive strength than that of the control mixture. The residual compressive strengths of fly ash-silica fume-incorporated mixture was similar to those in binary mixtures. The UPV test results revealed a larger than 50% reduction in transition velocity when the temperature was above 500 °C, and there is a strong association between the UPV and compressive strength test results of the mixtures at different temperatures, but the correlation decreased inversely proportional to the exposure temperature. Among the ternary mixtures, those mixtures that incorporate natural zeolite indicate the most significant mass loss after exposing to elevated temperature. The environmental results indicate that the substitution of pozzolanic materials with Portland cement may not always be beneficial. The ecosystem quality results of binary fly ash mixtures were larger than the control mixture due to the extensive transportation distance of import. In addition, metakaolin binary mixture exposes larger damage to the resources. Silica fume-incorporated mixtures had significant damage to human health. The ternary blended mixtures can be a remedy to obtain the optimized fire-resistant results and to compensate the environmental burdens of the inferior pozzolan in all the damage categories

    FungalTraits : a user-friendly traits database of fungi and fungus-like stramenopiles

    No full text
    The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and FunFun together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.Supplementary Information: Fig. S1. Trait distributions of fungal genera in different fungal phyla.Fig. S2. Trait distributions of Stramenopila genera in different Stramenopila phyla.Fig. S3. Distribution of the ten most common fungal guilds among annotated sequences.Table S1. Traits of genera.Table S2. Traits of sequences.Table S3. Traits of species hypothesis.Table S4. Example dataset for genus-level annotation using the vlookup function in Excel.Table S5. Comparison of workflows and outputs conducted in FunTraits and FUNGuild.Supplementary item 1. List of trait states for genera and sequences.Supplementary item 2. Instructions for annotators of fungal ITS sequences.Estonian Science Foundation, the University of Tartu and the European Regional Development Fund.https://www.springer.com/journal/132252021-11-01hj2021BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog
    corecore