13 research outputs found

    Photoinduced transformation of waste-derived soluble bio-based substances

    Get PDF
    [EN] Waste-derived, soluble bin-based substances (SBO), are effective low-cost photosensitizers that could find application in pollutant photodegradation. For this reason, it is important to understand if and to what extent irradiation could modify their properties. The exposure of SBO to simulated sunlight induced important spectral and structural modifications. Both the whole material and its acid-soluble fraction were characterized, highlighting several properties in common with humic and fulvic substances, including absorption spectra, specific absorbance and fluorescence behavior. The latter was described with a three-component model using PARAFAC analysis. Irradiation induced SBO photobleaching, but the absorbance of the acid-soluble fraction increased with irradiation. This finding suggests a progressive photochemical solubilization of SBO, which is confirmed by the increase of the carboxylic groups. In addition to absorbance, the fluorescence of whole SBO was also decreased by irradiation, thereby suggesting that both chromophores and fluorophores were photodegraded. The increasingly hydrophilic character given to SBO by irradiation also accounted for the photoinduced decrease of the surfactant properties of the material. (C) 2015 Elsevier B.V. All rights reserved.This work was funded by the 7thFP IRSES-2010-269128-EnvironBos Marie Curie Action and by Ministero delle Politiche Agricole e Forestali (Agrienergia project). The authors are grateful to the following private and/or public Italian institutions: (a) Acea Pinerolese Spa in Pinerolo (TO) for supplying the SBO sourcing materials; (b) Studio Chiono ed Associati in Rivarolo Canavese (TO) for making available pilot equipment and services for the production of the SBO.Avetta, P.; Berto, S.; Bianco Prevot, A.; Minella, M.; Montoneri, E.; Persico, D.; Vione, D.... (2015). Photoinduced transformation of waste-derived soluble bio-based substances. Chemical Engineering Journal. 274:247-255. https://doi.org/10.1016/j.cej.2015.03.126S24725527

    Humic Substances Enhance Chlorothalonil Phototransformation via Photoreduction and Energy Transfer

    Get PDF
    ABSTRACT: The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet–visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300–450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances

    Humic-like substances extracted from composts can promote the photodegradation of Irgarol 1051 in solar light.

    No full text
    Humic-like substances (HLS) were extracted from a mixture of sewage sludges and trimmings (70\u201330%, w/w) after different times of composting (0, 70 days and 130 days). HLS were analyzed by elemental analysis, UV\u2013visible and fluorescence spectroscopy and also tested for their ability to photosensitize the degradation of Irgarol. The rate of Irgarol photodegradation in artificial solar light was found to be 2.5- to 4.3-fold higher in the presence of HLS than in buffered Milli-Q water. These results were confirmed by experiments in solar light that evidenced the photodegrading properties of HLS in a more striking way. Using 2-propanol as hydroxyl radical scavenger, we could show that hydroxyl radicals contributed to the photosensitized Irgarol degradation for about 25%. The photodegrading activity of HLS, their absorbance and their emissive properties were all found to increase between 0 and 70 days of composting and to remain quite constant between 70 and 130 days. The degree of humification varied in the same way, linking all these properties to the humification process

    Waste Cleaning Waste: Photodegradation of Monochlorophenols in the Presence of Waste-Derived Photosensitizer

    No full text
    Soluble bio-based substances (SBO) have been isolated from urban waste. Their structural similarity with natural organic matter suggested exploring their activity in the photodegradation of organic substrates. In this work, they are shown to promote the photodegradation of monochlorophenols. Experiments performed with 1.0 Ă— 10-4 M substrate solutions irradiated by simulated solar light in the presence of SBO showed the progressive degradation of all the probe substrates. The experimental data were fitted to a pseudo-first-order kinetics, and the rate constant was found to decrease in the following order: 2-chlorophenol > 3-chlorophenol > 4-chlorophenol. The effect of pH and SBO concentration on chlorophenols degradation was assessed. Experiments performed in the presence of selective scavengers along with EPR measurements supported the main role of singlet oxygen in the substrate photodegradation mechanism. Toxicity assays showed that the photodegradation of chlorophenols in the presence of SBO is accompanied with a progressive up to complete detoxification of the system. Moreover, no significant contribution of SBO to the whole system toxicity was observed. The results show how urban wastes can be a resource of photosensitizing bio-based substances to be explored in wastewater treatment
    corecore