161 research outputs found
Comparative proteomics reveal characteristics of life-history transitions in a social insect
<p>Abstract</p> <p>Background</p> <p>Honey bee (<it>Apis mellifera</it>) workers are characterized by complex social behavior. Their life-history is dominated by a period of within-nest activity followed by a phase of long-distance flights and foraging. General insights into insect metabolism imply that foraging onset is associated with fundamental metabolic changes, and theory on social evolution suggests metabolic adaptations that are advantageous for the colony as a whole.</p> <p>Results</p> <p>Here we address the life-history characteristics of workers with LC-MS/MS based relative quantification of major proteins. Our approach includes: i. Calculation of a false positive rate for the identifications, ii. Support of relative protein quantification results obtained from spectral count by non-parametric statistics, and iii. Correction for Type 1 error inflation using a bootstrap iteration analysis. Our data are consistent with the use of glucose as the main fuel for honey bee flight. Moreover, the data delivers information on the expression of ATPsynthases/ATPases, and provide new insights into nurse- and forager-specific patterns of protection against oxidative stress.</p> <p>Conclusion</p> <p>The results show the suitability of this approach to investigate fundamental biochemical changes in an insect, and provide new evidence for metabolic specializations that occur during the social ontogeny of worker honey bees.</p
Sensory Response System of Social Behavior Tied to Female Reproductive Traits
Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The 'pollen-hoarding syndrome' of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6-7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization.Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects
Recommended from our members
The Lifespan Extension Effects of Resveratrol are Conserved in the Honey Bee and May Be Driven by a Mechanism Related to Caloric Restriction
Our interest in healthy aging and in evolutionarily conserved mechanisms of lifespan extension prompted us to investigate whether features of age-related decline in the honey bee could be attenuated with resveratrol. Resveratrol is regarded as a caloric restriction mimetic known to extend lifespan in some but not all model species. The current, prevailing view is that resveratrol works largely by activating signaling pathways. It has also been suggested that resveratrol may act as an antioxidant and confer protection against nervous system impairment and oxidative stress. To test whether honey bee lifespan, learning performance, and food perception could be altered by resveratrol, we supplemented the diets of honey bees and measured lifespan, olfactory learning, and gustatory responsiveness to sucrose. Furthermore, to test the effects of resveratrol under metabolic challenge, we used hyperoxic environments to generate oxidative stress. Under normal oxygen conditions, two resveratrol treatments—30 and 130 μM—lengthened average lifespan in wild-type honey bees by 38% and 33%, respectively. Both resveratrol treatments also lengthened maximum and median lifespan. In contrast, hyperoxic stress abolished the resveratrol life-extension response. Furthermore, resveratrol did not affect learning performance, but did alter gustation. Honey bees that were not fed resveratrol exhibited greater responsiveness to sugar, while those supplemented with resveratrol were less responsive to sugar. We also discovered that individuals fed a high dose of resveratrol—compared to controls—ingested fewer quantities of food under ad libitum feeding conditions
Honeybee Associative Learning Performance and Metabolic Stress Resilience Are Positively Associated
Background: Social-environmental influences can affect animal cognition and health. Also, human socio-economic status is a covariate factor connecting psychometric test-performance (a measure of cognitive ability), educational achievement, lifetime health, and survival. The complimentary hypothesis, that mechanisms in physiology can explain some covariance between the same traits, is disputed. Possible mechanisms involve metabolic biology affecting integrity and stability of physiological systems during development and ageing. Knowledge of these relationships is incomplete, and underlying processes are challenging to reveal in people. Model animals, however, can provide insights into connections between metabolic biology and physiological stability that may aid efforts to reduce human health and longevity disparities. Results: We document a positive correlation between a measure of associative learning performance and the metabolic stress resilience of honeybees. This relationship is independent of social factors, and may provide basic insights into how central nervous system (CNS) function and metabolic biology can be associated. Controlling for social environment, age, and learning motivation in each bee, we establish that learning in Pavlovian conditioning to an odour is positively correlated with individual survival time in hyperoxia. Hyperoxia induces oxidative metabolic damage, and provides a measure of metabolic stress resistance that is often related to overall lifespan in laboratory animals. The positive relationship between Pavlovian learning ability and stress resilience in the bee is not equally established in other model organisms so far
Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria
Recent studies of honeybees and bumblebees have examined combinatory effects of different stressors, as insect pollinators are naturally exposed to multiple stressors. At the same time the potential influences of simultaneously occurring agricultural agents on insect pollinator health remain largely unknown. Due to different farming methods, and the drift of applied agents and manure, pollinators are most probably exposed to insecticides but also bacteria from organic fertilizers at the same time. We orally exposed honeybee workers to sub-lethal doses of the insecticide thiacloprid and two strains of the bacterium Enterococcus faecalis, which can occur in manure from farming animals. Our results show that under laboratory conditions the bees simultaneously exposed to the a bacterium and the pesticide thiacloprid thiacloprid had significant higher survival rates 11 days post exposure than the controls, which surprisingly showed the lowest survival. Bees that were exposed to diet containing thiacloprid showed decreased food intake. General antibacterial activity is increased by the insecticide and the bacteria, resulting in a higher immune response observed in treated individuals compared to control individuals. We thus propose that caloric restriction through behavioural and physiological adaptations may have mediated an improved survival and stress resistance in our tests. However, the decreased food consumption could in long-term also result in possible negative effects at colony level. Our study does not show an additive negative impact of sub-lethal insecticide and bacteria doses, when tested under laboratory conditions. In contrast, we report seemingly beneficial effects of simultaneous exposure of bees to agricultural agents, which might demonstrate a surprising biological capacity for coping with stressors, possibly through hormetic regulation.Peer reviewe
Juvenile hormone regulation of Drosophila aging
Background: Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging in part through its impact on juvenile hormone titer, but no data yet address whether reduction of juvenile hormone is sufficient to control Drosophila life span. Here we adapt a genetic approach to knock out the corpora allata in adult Drosophila melanogaster and characterize adult life history phenotypes produced by reduction of juvenile hormone. With this system we test potential explanations for how juvenile hormone modulates aging.
Results: A tissue specific driver inducing an inhibitor of a protein phosphatase was used to ablate the corpora allata while permitting normal development of adult flies. Corpora allata knockout adults had greatly reduced fecundity, inhibited oogenesis, impaired adult fat body development and extended lifespan. Treating these adults with the juvenile hormone analog methoprene restored all traits toward wildtype. Knockout females remained relatively long-lived even when crossed into a genotype that blocked all egg production. Dietary restriction further extended the lifespan of knockout females. In an analysis of expression profiles of knockout females in fertile and sterile backgrounds, about 100 genes changed in response to loss of juvenile hormone independent of reproductive state.
Conclusions: Reduced juvenile hormone alone is sufficient to extend the lifespan of Drosophila melanogaster. Reduced juvenile hormone limits reproduction by inhibiting the production of yolked eggs, and this may arise because juvenile hormone is required for the post-eclosion development of the vitellogenin-producing adult fat body. Our data do not support a mechanism for juvenile hormone control of longevity simply based on reducing the physiological costs of egg production. Nor does the longevity benefit appear to function through mechanisms by which dietary restriction extends longevity. We identify transcripts that change in response to juvenile hormone independent of reproductive state and suggest these represent somatically expressed genes that could modulate how juvenile hormone controls persistence and longevity
The Gene vitellogenin Has Multiple Coordinating Effects on Social Organization
Temporal division of labor and foraging specialization are key characteristics of honeybee social organization. Worker honeybees (Apis mellifera) initiate foraging for food around their third week of life and often specialize in collecting pollen or nectar before they die. Variation in these fundamental social traits correlates with variation in worker reproductive physiology. However, the genetic and hormonal mechanisms that mediate the control of social organization are not understood and remain a central question in social insect biology. Here we demonstrate that a yolk precursor gene, vitellogenin, affects a complex suite of social traits. Vitellogenin is a major reproductive protein in insects in general and a proposed endocrine factor in honeybees. We show by use of RNA interference (RNAi) that vitellogenin gene activity paces onset of foraging behavior, primes bees for specialized foraging tasks, and influences worker longevity. These findings support the view that the worker specializations that characterize hymenopteran sociality evolved through co-option of reproductive regulatory pathways. Further, they demonstrate for the first time how coordinated control of multiple social life-history traits can originate via the pleiotropic effects of a single gene that affects multiple physiological processes
- …