83 research outputs found

    Modelling optical emission of Ultra-luminous X-ray Sources accreting above the Eddington limit

    Full text link
    We study the evolution of binary systems of Ultra-luminous X-ray sources and compute their optical emission assuming accretion onto a black hole via a non standard, advection-dominated slim disc with an outflow. We consider systems with black holes of 20M⊙20M_{\odot} and 100M⊙100M_{\odot}, and donor masses between 8M⊙8M_{\odot} and 25M⊙25M_{\odot}. Super-critical accretion has considerable effects on the optical emission. The irradiating flux in presence of an outflow remains considerably stronger than that produced by a standard disc. However, at very high accretion rates the contribution of X-ray irradiation becomes progressively less important in comparison with the intrinsic flux emitted from the disc. After Main Sequence the evolutionary tracks of the optical counterpart on the colour-magnitude diagram are markely different from those computed for Eddington-limited accretion. Systems with stellar-mass black holes and 12−20M⊙12-20 M_{\odot} donors accreting supercritically are characterized by blue colors (F450W -- F555W ≃−0.2:+0.1\simeq - 0.2 : +0.1) and high luminosity (MV≃−4:−6.5M_{V} \simeq - 4 : - 6.5). Systems with more massive black holes accreting supercritically from evolved donors of similar mass have comparable colours but can reach MV≃−8M_V \simeq - 8. We apply our model to NGC 1313 X-2 and NGC 4559 X-7. Both sources are well represented by a system accreting above Eddington from a massive evolved donor. For NGC 1313 X-2 the agreement is for a ∌20M⊙\sim 20M_{\odot} black hole, while NGC4559 X-7 requires a significantly more massive black hole.Comment: 13 pages, 15 figures, Accepted for publication in MNRAS; Acknowledgments adde

    Modelling Multiwavelength Emission of Ultra-luminous X-ray sources: theory versus observations

    Get PDF
    The main goal of my PhD Thesis was to investigate the nature of ULXs using their multiwave-length emission properties and to extend the treatment of the evolution of their binary systems including the effects of super-Eddington accretion. In this way we constrain the masses of the black holes and donor stars in these systems, and their accretion regime. To this end, we developed a code that enables us to constrain the properties of ULXs binaries from their position on the Color-Magnitude Diagram, from their multiwavelength SED and from additional information available on the systems (such as the age of its parent stellar population). A novelty of this present treatment is the inclusion of super-Eddington accretion, with the possibility to produce the output in the HST photometric system; the extension of the parameter space for BH and donor masses with a proper computation of the orbital angular momentum loss during super-critical accretion; the possibility to model the Multiwavelength emission of ULXs considering the effects of a Comptonzing corona covering the innermost regions of the disc

    Physical–Chemical Properties of Biogenic Selenium Nanostructures Produced by Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1

    Get PDF
    Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1 were isolated from the rhizosphere soil of the selenium-hyperaccumulator legume Astragalus bisulcatus and waste material from a dumping site for roasted pyrites, respectively. Here, these bacterial strains were studied as cell factories to generate selenium-nanostructures (SeNS) under metabolically controlled growth conditions. Thus, a defined medium (DM) containing either glucose or pyruvate as carbon and energy source along with selenite () was tested to evaluate bacterial growth, oxyanion bioconversion and changes occurring in SeNS features with respect to those generated by these strains grown on rich media. Transmission electron microscopy (TEM) images show extra- or intra-cellular emergence of SeNS in SeITE02 or MPV1 respectively, revealing the presence of two distinct biological routes of SeNS biogenesis. Indeed, the stress exerted by upon SeITE02 cells triggered the production of membrane vesicles (MVs), which surrounded Se-nanoparticles (SeNPsSeITE02-G_e and SeNPsSeITE02-P_e with average diameter of 179 ± 56 and 208 ± 60 nm, respectively), as highlighted by TEM and scanning electron microscopy (SEM), strongly suggesting that MVs might play a crucial role in the excreting mechanism of the SeNPs in the extracellular environment. On the other hand, MPV1 strain biosynthesized intracellular inclusions likely containing hydrophobic storage compounds and SeNPs (123 ± 32 nm) under pyruvate conditioning, while the growth on glucose as the only source of carbon and energy led to the production of a mixed population of intracellular SeNPs (118 ± 36 nm) and nanorods (SeNRs; average length of 324 ± 89). SEM, fluorescence spectroscopy, and confocal laser scanning microscopy (CLSM) revealed that the biogenic SeNS were enclosed in an organic material containing proteins and amphiphilic molecules, possibly responsible for the high thermodynamic stability of these nanomaterials. Finally, the biogenic SeNS extracts were photoluminescent upon excitation ranging from 380 to 530 nm, whose degree of fluorescence emission (λem = 416–640 nm) was comparable to that from chemically synthesized SeNPs with L-cysteine (L-cys SeNPs). This study offers novel insights into the formation, localization, and release of biogenic SeNS generated by two different Gram-negative bacterial strains under aerobic and metabolically controlled growth conditions. The work strengthens the possibility of using these bacterial isolates as eco-friendly biocatalysts to produce high quality SeNS targeted to possible biomedical applications and other biotechnological purposes

    Antibody Titer Kinetics and SARS-CoV-2 Infections Six Months after Administration with the BNT162b2 Vaccine

    Get PDF
    Background: Studies reporting the long-term humoral response after receiving the BNT162b2 COVID-19 vaccine are important to drive future vaccination strategies. Yet, available literature is scarce. Covidiagnostix is a multicenter study designed to assess the antibody response in >1000 healthcare professionals (HCPs) who received the BNT162b2 vaccine. Methods: Serum was tested at time-0 (T0), before the first dose, T1, T2, and T3, respectively, 21, 42, and 180 days after T0. Antibodies against the SARS-CoV-2 nucleocapsid-protein were measured to assess SARS-CoV-2 infections, whereas antibodies against the receptor-binding domain of the spike protein were measured to assess the vaccine response. Neutralization activity against the D614G, B.1.1.7, and B.1.351 variants were also analyzed. Results: Six months post-vaccination HCPs showed an antibody titer decrease of approximately 70%, yet, the titer was still one order of magnitude higher than that of seropositive individuals before vaccination. We identified 12 post-vaccination infected HCPs. None showed severe symptoms. Interestingly, most of them showed titers at T2 above the neutralization thresholds obtained from the neutralization activity experiments. Conclusion: Vaccination induces a humoral response which is well detectable even six months post-vaccination. Vaccination prevents severe COVID-19 cases, yet post-vaccination infection is possible even in the presence of a high anti-S serum antibody titer

    A multi-wavelength view of distinct accretion regimes in the pulsating ultraluminous X-ray source NGC 1313 X-2

    Get PDF
    NGC 1313 X-2 is one of the few known pulsating ultraluminous X-ray sources (PULXs), and so is thought to contain a neutron star that accretes at highly super-Eddington rates. However, the physics of this accretion remains to be determined. Here, we report the results of two simultaneous XMM-Newton and HST observations of this PULX taken to observe two distinct X-ray behaviours as defined from its Swift light curve. We find that the X-ray spectrum of the PULX is best described by the hard ultraluminous regime during the observation taken in the lower flux, lower variability amplitude behaviour; its spectrum changes to a broadened disc during the higher flux, higher variability amplitude epoch. However, we see no accompanying changes in the optical/UV fluxes, with the only difference being a reduction in flux in the near-infrared (NIR) as the X-ray flux increased. We attempt to fit irradiation models to explain the UV/optical/IR fluxes but they fail to provide meaningful constraints. Instead, a physical model for the system leads us to conclude that the optical light is dominated by a companion O/B star, albeit with an IR excess that may be indicative of a jet. We discuss how these results may be consistent with the precession of the inner regions of the accretion disc leading to changes in the observed X-ray properties, but not the optical, and whether we should expect to observe reprocessed emission from ULXs

    Topological network properties of resting-state functional connectivity patterns are associated with metal mixture exposure in adolescents

    Get PDF
    IntroductionAdolescent exposure to neurotoxic metals adversely impacts cognitive, motor, and behavioral development. Few studies have addressed the underlying brain mechanisms of these metal-associated developmental outcomes. Furthermore, metal exposure occurs as a mixture, yet previous studies most often consider impacts of each metal individually. In this cross-sectional study, we investigated the relationship between exposure to neurotoxic metals and topological brain metrics in adolescents. MethodsIn 193 participants (53% females, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of four metals (manganese, lead, copper, and chromium) in multiple biological media (blood, urine, hair, and saliva) and acquired resting-state functional magnetic resonance imaging scans. Using graph theory metrics, we computed global and local efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used weighted quantile sum (WQS) regression models to examine association between metal mixtures and each graph metric (GE or LE), adjusted for sex and age. ResultsWe observed significant negative associations between the metal mixture and GE and LE [beta GE = -0.076, 95% CI (-0.122, -0.031); beta LE= -0.051, 95% CI (-0.095, -0.006)]. Lead and chromium measured in blood contributed most to this association for GE, while chromium measured in hair contributed the most for LE. DiscussionOur results suggest that exposure to this metal mixture during adolescence reduces the efficiency of integrating information in brain networks at both local and global levels, informing potential neural mechanisms underlying the developmental toxicity of metals. Results further suggest these associations are due to combined joint effects to different metals, rather than to a single metal

    Measurement of energetic single-photon production at LEP

    Get PDF

    Energy and particle flow in three-jet and radiative two-jet events from hadronic Z decays

    Get PDF

    Search for non-minimal Higgs bosons in Z 0 decays

    Get PDF
    We report on a search for the neutral and charged Higgs bosons predicted by models of spontaneous symmetry breaking with more than one Higgs doublet field. No signals are observed. We set model-independent limits on masses or branching ratios of singly and pair-produced neutral and charged Higgs bosons. In addition, we interpret our results in the framework of a general two-doublet Higgs model and the Minimal Supersymmetric extension of the Standard Model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47892/1/10052_2005_Article_BF01474331.pd
    • 

    corecore