19 research outputs found

    Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).

    Get PDF
    (c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year

    The Costs of Carnivory

    Get PDF
    Mammalian carnivores fall into two broad dietary groups: smaller carnivores (<20 kg) that feed on very small prey (invertebrates and small vertebrates) and larger carnivores (>20 kg) that specialize in feeding on large vertebrates. We develop a model that predicts the mass-related energy budgets and limits of carnivore size within these groups. We show that the transition from small to large prey can be predicted by the maximization of net energy gain; larger carnivores achieve a higher net gain rate by concentrating on large prey. However, because it requires more energy to pursue and subdue large prey, this leads to a 2-fold step increase in energy expenditure, as well as increased intake. Across all species, energy expenditure and intake both follow a three-fourths scaling with body mass. However, when each dietary group is considered individually they both display a shallower scaling. This suggests that carnivores at the upper limits of each group are constrained by intake and adopt energy conserving strategies to counter this. Given predictions of expenditure and estimates of intake, we predict a maximum carnivore mass of approximately a ton, consistent with the largest extinct species. Our approach provides a framework for understanding carnivore energetics, size, and extinction dynamics

    Modern and ancient red fox (Vulpes vulpes) in Europe show an unusual lack of geographical and temporal structuring, and differing responses within the carnivores to historical climatic change

    Get PDF
    Despite phylogeographical patterns being well characterised in a large number of species, and generalised patterns emerging, the carnivores do not all appear to show consistent trends. While some species tend to fit with standard theoretical phylogeographic expectations (e.g. bears), others show little obvious modern phylogeographic structure (e.g. wolves). In this study we briefly review these studies, and present a new phylogeographical study of the red fox (Vulpes vulpes) throughout Europe, using a combination of ancient DNA sequences obtained from museum specimens, and modern sequences collated from GenBank. We used cytochrome b (250 bp) and the mitochondrial control region (268 bp) to elucidate both current and historical phylogeographical patterning. Results We found evidence for slight isolation by distance in modern populations, as well as differentiation associated with time, both of which can likely be attributed to random genetic drift. Despite high sequence diversity (11.2% cytochrome b, 16.4% control region), no evidence for spatial structure (from Bayesian trees) is found either in modern samples or ancient samples for either gene, and Bayesian skyline plots suggested little change in the effective population size over the past 40,000 years. Conclusions It is probable that the high dispersal ability and adaptability of the red fox has contributed to the lack of observable differentiation, which appears to have remained consistent over tens of thousands of years. Generalised patterns of how animals are thought to have responded to historical climatic change are not necessarily valid for all species, and so understanding the differences between species will be critical for predicting how species will be affected by future climatic change

    Data from: Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea

    No full text
    Marine fish often show little genetic structuring in neutral marker genes, and Atlantic herring (Clupea harengus) in the Baltic Sea are no exception; historically, very low levels of population differentiation (FST ≈ 0.002) have been found, despite a high degree of interpopulation environmental heterogeneity in salinity and temperature. Recent exome sequencing and SNP studies have however shown that many loci are under selection in this system. Here, we combined population genetic analyses of a large number of transcriptome-derived microsatellite markers with oceanographic modelling to investigate genetic differentiation and connectivity in Atlantic herring at a relatively fine scale within the Baltic Sea. We found evidence for weak but robust and significant genetic structuring (FST = 0.008) explainable by oceanographic connectivity. Genetic differentiation was also associated with site differences in temperature and salinity, with the result driven by the locus Her14 which appears to be under directional selection (FST = 0.08). The results show that Baltic herring are genetically structured within the Baltic Sea, and highlight the role of oceanography and environmental factors in explaining this structuring. The results also have implications for the management of herring fisheries, the most economically important fishery in the Baltic Sea, suggesting that the current fisheries management units may be in need of revision

    Genepop 60 3

    No full text
    Genepop formatted file for 60 microsatellite loci, for 15 sampling locations
    corecore