11 research outputs found

    Polarized cortical tension drives zebrafish epiboly movements

    Get PDF
    The principles underlying the biomechanics of morphogenesis are largely unknown. Epiboly is an essential embryonic event in which three tissues coordinate to direct the expansion of the blastoderm. How and where forces are generated during epiboly, and how these are globally coupled remains elusive. Here we developed a method, hydrodynamic regression (HR), to infer 3D pressure fields, mechanical power, and cortical surface tension profiles. HR is based on velocity measurements retrieved from 2D+T microscopy and their hydrodynamic modeling. We applied HR to identify biomechanically active structures and changes in cortex local tension during epiboly in zebrafish. Based on our results, we propose a novel physical description for epiboly, where tissue movements are directed by a polarized gradient of cortical tension. We found that this gradient relies on local contractile forces at the cortex, differences in elastic properties between cortex components and the passive transmission of forces within the yolk cell. All in all, our work identifies a novel way to physically regulate concerted cellular movements that might be instrumental for the mechanical control of many morphogenetic processes.Peer ReviewedPostprint (author's final draft

    Mechanics and Cellular Mechanisms Driving Zebrafish Epiboly = Mecánica y mecanismos celulares responsables de la epibolia del pez cebra

    Get PDF
    [eng] Epithelial layers constitute the skeleton of early embryos and most tissues and organs and their remodelling during development is essential for reshaping the embryo and for tissue architecture. Epithelial expansion in particular, has fundamental roles during early embryogenesis in both vertebrates and invertebrates. Some well-established invertebrate models have contributed greatly to our knowledge of this process. However, we are still far from having a global understanding of the cellular, molecular and mechanical changes involved in this process, the diversity, and relationship between them. With this in mind, we decided to explore a less well known model for epithelial expansion, epiboly in the vertebrate zebrafish. Epiboly is the expansion of the blastoderm around a big yolk cell to finally engulf it. Three different layers are involved in this process, an epithelial layer, a mesenquimal layer and a big yolk cell. Although teleost epiboly has been studied for many years a clear understanding of the process was still missing. We analysed the cellular, molecular and mechanical elements involved in this process and found that epithelial expansion is in this process a passive event driven by the pulling of the adjacent layer, the yolk syncytium. The increase in area of this epithelia is achieved by cell shape changes (flattening) and the RhoGTPase Rac1 activity seems to be necessary for these passive changes in shape. The contraction in the yolk syncytium is accompanied by the formation of membrane folds and endocytic vesicles in this area and the different mechanical properties of the elements at both sides of these contractile domains are, together with endocytosis, essential to understand the expansion. In relation to this, we found that Rab5ab activity in the yolk is essential for the expansion and for doming of the internal part of the yolk. In addition, we showed that the main constituent of the embryo at this stage, the yolk granules, behave as an hydrodynamic fluid at low Reynolds number that passively flow during epiboly by the activity at the surface. We learned that the spherical geometry of the embryo together with volume conservation and the transmission of forces between the different elements involved in the process are essential to understand the changes observed in the blastoderm during this process and its global coordination. We generated a non-intrusivemethodology to extract the mechanical changes involved in a given morphogenetic event from microscopy data based on the relation between the active elements (elastic, visco-elastic) and the passive ones (fluids). We applied this method to the process of epiboly and validated the results obtained by atomic force microscopy (AFM) indentation and laser microsurgery experiments. Finally, we generated an enhancer trap screen using the Gal4/UAS binary system with the aim of being able to spatially restrict gene expression during epiboly. However, and although we found several interesting lines that drove specific gene expression, we could not find any with sufficient early expression to be useful for our epiboly studies. Overall, we learnt that an isotropic actomyosin contraction generates an anisotropic stress pattern and movement by the properties of the surrounding elements. To get a precise understanding of epiboly we had to consider the transmission of forces between the different layer and volume conservation. For that, it was important to take into account both the contribution from the active elements (cortex) and from the passive ones (fluid). The role that unselective membrane removal has in morphogenesis has been barely explored. We anticipate that membrane tension and removal and its relationship to actomyosin contraction and shape changes will become an emerging and exciting field and that zebrafish epiboly will become a great model to study these relationships.[spa] La expansión de epitelios es esencial durante la embriogénesis de muchos organismos tanto invertebrados como vertebrados y también juega un papel importante en el organismo adulto como, por ejemplo, durante el proceso de cicatrización de heridas. Para ampliar nuestros conocimiento sobre los mecanismo celulares, moleculares y mecánicos responsables de este cambio morfogenético estudiamos la epibolia del vertebrado pez cebra. La epibolia de pez cebra consiste en la expansión del blastodermo alrededor del vitelo para finalmente embolverlo. Elaboramos un análisis descriptivo, funcional y mecánico del procesos que nos llevó a concluir que la expansión de este epitelio (EVL) es pasiva y generada por la contracción y la endocitosis del córtex de la capa adyacente, el sincitio del vitelo. La actividad de la RhoGTPasa Rac en el epitelio parece importante para este cambio de forma celular pasivo, mientras que la endocitosis mediada por la RhoGTPasa Rab5ab en el sincitio adyacente es esencial para la expansión del epitelio. Encontramos que la contracción isotrópica del córtex del sincitio genera un movimiento unidireccional por las diferentes propiedades mecánicas de las dos estructuras adyacentes. Por otro lado, descubrimos que los gránulos del vitelo, el mayor componente del huevo en este estadio, se comportan como un fluido viscoso incompresible que se mueven pasivamente durante el proceso de expansión por la actividad generada en la superficie. Además, el movimiento de estos gránulos durante el proceso puede explicar el cambio de forma del blastodermo durante el proceso. Finalmente, generamos un método para extraer los cambios mecánicos durante la epibolia a partir de imágenes de microscopia, basado en la relación entre la actividad elástica del córtex y el movimiento del fluido. Los resultados obtenidos con este método fueron validados por microscopía de fuerza atómica y microcirugía del córtex. En resumen, hemos obtenido un conocimiento global de la epibolia y aprendido que para explicar este proceso es necesario considerar las diferentes propiedades mecánicas de los diferentes elementos involucrados y la transmisión de fuerzas entre estos teniendo en cuenta la conservación del volumen y la forma esférica del embrión. Creemos que estos conceptos resultarán aplicables a otros procesos morfogenéticos

    Mechanics and Cellular Mechanisms Driving Zebrafish Epiboly = Mecánica y mecanismos celulares responsables de la epibolia del pez cebra

    No full text
    Epithelial layers constitute the skeleton of early embryos and most tissues and organs and their remodelling during development is essential for reshaping the embryo and for tissue architecture. Epithelial expansion in particular, has fundamental roles during early embryogenesis in both vertebrates and invertebrates. Some well-established invertebrate models have contributed greatly to our knowledge of this process. However, we are still far from having a global understanding of the cellular, molecular and mechanical changes involved in this process, the diversity, and relationship between them. With this in mind, we decided to explore a less well known model for epithelial expansion, epiboly in the vertebrate zebrafish. Epiboly is the expansion of the blastoderm around a big yolk cell to finally engulf it. Three different layers are involved in this process, an epithelial layer, a mesenquimal layer and a big yolk cell. Although teleost epiboly has been studied for many years a clear understanding of the process was still missing. We analysed the cellular, molecular and mechanical elements involved in this process and found that epithelial expansion is in this process a passive event driven by the pulling of the adjacent layer, the yolk syncytium. The increase in area of this epithelia is achieved by cell shape changes (flattening) and the RhoGTPase Rac1 activity seems to be necessary for these passive changes in shape. The contraction in the yolk syncytium is accompanied by the formation of membrane folds and endocytic vesicles in this area and the different mechanical properties of the elements at both sides of these contractile domains are, together with endocytosis, essential to understand the expansion. In relation to this, we found that Rab5ab activity in the yolk is essential for the expansion and for doming of the internal part of the yolk. In addition, we showed that the main constituent of the embryo at this stage, the yolk granules, behave as an hydrodynamic fluid at low Reynolds number that passively flow during epiboly by the activity at the surface. We learned that the spherical geometry of the embryo together with volume conservation and the transmission of forces between the different elements involved in the process are essential to understand the changes observed in the blastoderm during this process and its global coordination. We generated a non-intrusivemethodology to extract the mechanical changes involved in a given morphogenetic event from microscopy data based on the relation between the active elements (elastic, visco-elastic) and the passive ones (fluids). We applied this method to the process of epiboly and validated the results obtained by atomic force microscopy (AFM) indentation and laser microsurgery experiments. Finally, we generated an enhancer trap screen using the Gal4/UAS binary system with the aim of being able to spatially restrict gene expression during epiboly. However, and although we found several interesting lines that drove specific gene expression, we could not find any with sufficient early expression to be useful for our epiboly studies. Overall, we learnt that an isotropic actomyosin contraction generates an anisotropic stress pattern and movement by the properties of the surrounding elements. To get a precise understanding of epiboly we had to consider the transmission of forces between the different layer and volume conservation. For that, it was important to take into account both the contribution from the active elements (cortex) and from the passive ones (fluid). The role that unselective membrane removal has in morphogenesis has been barely explored. We anticipate that membrane tension and removal and its relationship to actomyosin contraction and shape changes will become an emerging and exciting field and that zebrafish epiboly will become a great model to study these relationshipsLa expansión de epitelios es esencial durante la embriogénesis de muchos organismos tanto invertebrados como vertebrados y también juega un papel importante en el organismo adulto como, por ejemplo, durante el proceso de cicatrización de heridas. Para ampliar nuestros conocimiento sobre los mecanismo celulares, moleculares y mecánicos responsables de este cambio morfogenético estudiamos la epibolia del vertebrado pez cebra. La epibolia de pez cebra consiste en la expansión del blastodermo alrededor del vitelo para finalmente embolverlo. Elaboramos un análisis descriptivo, funcional y mecánico del procesos que nos llevó a concluir que la expansión de este epitelio (EVL) es pasiva y generada por la contracción y la endocitosis del córtex de la capa adyacente, el sincitio del vitelo. La actividad de la RhoGTPasa Rac en el epitelio parece importante para este cambio de forma celular pasivo, mientras que la endocitosis mediada por la RhoGTPasa Rab5ab en el sincitio adyacente es esencial para la expansión del epitelio. Encontramos que la contracción isotrópica del córtex del sincitio genera un movimiento unidireccional por las diferentes propiedades mecánicas de las dos estructuras adyacentes. Por otro lado, descubrimos que los gránulos del vitelo, el mayor componente del huevo en este estadio, se comportan como un fluido viscoso incompresible que se mueven pasivamente durante el proceso de expansión por la actividad generada en la superficie. Además, el movimiento de estos gránulos durante el proceso puede explicar el cambio de forma del blastodermo durante el proceso. Finalmente, generamos un método para extraer los cambios mecánicos durante la epibolia a partir de imágenes de microscopia, basado en la relación entre la actividad elástica del córtex y el movimiento del fluido. Los resultados obtenidos con este método fueron validados por microscopía de fuerza atómica y microcirugía del córtex. En resumen, hemos obtenido un conocimiento global de la epibolia y aprendido que para explicar este proceso es necesario considerar las diferentes propiedades mecánicas de los diferentes elementos involucrados y la transmisión de fuerzas entre estos teniendo en cuenta la conservación del volumen y la forma esférica del embrión. Creemos que estos conceptos resultarán aplicables a otros procesos morfogenéticos

    The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins

    No full text
    Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. © 2011 Wiley-Liss, Inc.Funded by: Spanish Ministry of Science and Innovation. Grant Number: BFU2008-00022.Peer Reviewe

    Contractility, differential tension and membrane removal lead zebrafish epiboly biomechanics

    No full text
    Precise tissue remodeling during development is essential for shaping embryos and optimal organ function. Epiboly is an early gastrulation event by which the blastoderm expands around the yolk to engulf it. Three different layers are involved in this process, an epithelial layer (the enveloping layer, EVL), the embryo proper, constituted by the deep cells (DCs), and the yolk cell. Although teleost epiboly has been studied for many years, a clear understanding of its mechanics was still missing. Here we present new information on the cellular, molecular and mechanical elements involved in epiboly that, together with some other recent data and upon comparison with previous biomechanical models, lets conclude that the expansion of the epithelia is passive and driven by active cortical contraction and membrane removal in the adjacent layer, the External Yolk Syncytial Layer (E-YSL). The isotropic actomyosin contraction of the E-YSL cortex generates an anisotropic stress pattern and a directional net movement consequence of the differences in the deformation response of the 2 opposites adjacent domains (EVL and the Yolk Cytoplasmic Layer - YCL). Contractility is accompanied by the local formation of membrane folds and its removal by Rab5ab dependent macropinocytosis. The increase in area of the epithelia during the expansion is achieved by cell-shape changes (flattening) responding to spherical geometrical cues. The counterbalance between the geometry of the embryo and forces dissipation among different elements is therefore essential for epiboly global coordinationThe Consolidated Groups Program of the Generalitat de Catalunya and DGI and Consolider Grants from the Ministry of Economy and Competitivity of Spain to EMB supported this work.Peer reviewe

    Rab5ab-Mediated Yolk Cell Membrane Endocytosis Is Essential for Zebrafish Epiboly and Mechanical Equilibrium During Gastrulation

    Get PDF
    © 2021 Marsal, Hernández-Vega, Pouille and Martin-Blanco.Morphogenesis in early embryos demands the coordinated distribution of cells and tissues to their final destination in a spatio-temporal controlled way. Spatial and scalar differences in adhesion and contractility are essential for these morphogenetic movements, while the role that membrane remodeling may play remains less clear. To evaluate how membrane turnover modulates tissue arrangements we studied the role of endocytosis in zebrafish epiboly. Experimental analyses and modeling have shown that the expansion of the blastoderm relies on an asymmetry of mechanical tension in the yolk cell generated as a result of actomyosin-dependent contraction and membrane removal. Here we show that the GTPase Rab5ab is essential for the endocytosis and the removal of the external yolk cell syncytial layer (E-YSL) membrane. Interfering in its expression exclusively in the yolk resulted in the reduction of yolk cell actomyosin contractility, the disruption of cortical and internal flows, a disequilibrium in force balance and epiboly impairment. We conclude that regulated membrane remodeling is crucial for directing cell and tissue mechanics, preserving embryo geometry and coordinating morphogenetic movements during epiboly.This work was supported by the 2009SGR1009 Consolidated Scientific Group grant of the Generalitat de Catalunya and BFU2014-23451 and CSD-2007-00008 grants from the Ministry of Science and Innovation of Spain to EM-B

    Polarized cortical tension drives zebrafish epiboly movements

    No full text
    The principles underlying the biomechanics of morphogenesis are largely unknown. Epiboly is an essential embryonic event in which three tissues coordinate to direct the expansion of the blastoderm. How and where forces are generated during epiboly, and how these are globally coupled remains elusive. Here we developed a method, hydrodynamic regression (HR), to infer 3D pressure fields, mechanical power, and cortical surface tension profiles. HR is based on velocity measurements retrieved from 2D+T microscopy and their hydrodynamic modeling. We applied HR to identify biomechanically active structures and changes in cortex local tension during epiboly in zebrafish. Based on our results, we propose a novel physical description for epiboly, where tissue movements are directed by a polarized gradient of cortical tension. We found that this gradient relies on local contractile forces at the cortex, differences in elastic properties between cortex components and the passive transmission of forces within the yolk cell. All in all, our work identifies a novel way to physically regulate concerted cellular movements that might be instrumental for the mechanical control of many morphogenetic processes.Peer Reviewe
    corecore