199 research outputs found

    El poder disciplinar de Michel Foucault, aplicado al modelo educativo de Ecuador

    Get PDF
    Anais do III Encontro de Iniciação Científica da Unila - Sessão de Letras, Liguística e Artes II - 07/11/14 – 15h30 às 17h10 - Unila-PTI - Bloco 09 – Espaço 01 – Sala 03Ecuador, país de Sudamérica, ha dado un giro significativo en su historia, con reformas constitucionales que aseguran derechos a sus minorías étnicas, además de promover el estado del Buen Vivir y la sociedad del conocimiento. La educación, según señalan documentos oficiales y el discurso de gobierno, es el vínculo primordial para este desarrollo. Es así que surge la necesidad de conocer algunas reformas que vienen siendo inseridas para el impulso del sistema educativo y como se conjugan a los ideales estatales. Michel Foucault, posestructuralista, aporta conceptos como poder disciplinar para el análisis de las relaciones de poder dentro de las instituciones estatales, es así que tomando estas herramientas encaminamos el estudio de la Constitución, Plan Nacional Para el Buen Vivir y Ley Orgánica de Educación Intercultural, como documentos oficiales que proyectan la educación ecuatoriana. Creer que existen resistencias y oposiciones al currículo oficial, y demás herramientas que están estructurando la Educación Ecuatoriana, nos lleva a problematizar como el discurso del Buen Vivir y sociedad del Conocimiento, es impuesta desde el Estado. Y aún con reivindicaciones constitucionales no ha logrado crear nuevas estructuras de poder con las voces y saberes de los que históricamente han sido silenciados.Bolsista PIBIC-CNPQ; Universidade Federal da Integração Latino-Americana (UNILA

    Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies.

    Get PDF
    Immediate freezing at -20°C or below has been considered the gold standard for microbiome preservation, yet this approach is not feasible for many field studies, ranging from anthropology to wildlife conservation. Here we tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including such types of variation as freeze-thaw cycles and the high temperature fluctuations often encountered under field conditions. We found that three of the methods-95% ethanol, FTA cards, and the OMNIgene Gut kit-can preserve samples sufficiently well at ambient temperatures such that differences at 8 weeks are comparable to differences among technical replicates. However, even the worst methods, including those with no fixative, were able to reveal microbiome differences between species at 8 weeks and between individuals after a week, allowing meta-analyses of samples collected using various methods when the effect of interest is expected to be larger than interindividual variation (although use of a single method within a study is strongly recommended to reduce batch effects). Encouragingly for FTA cards, the differences caused by this method are systematic and can be detrended. As in other studies, we strongly caution against the use of 70% ethanol. The results, spanning 15 individuals and over 1,200 samples, provide our most comprehensive view to date of storage effects on stool and provide a paradigm for the future studies of other sample types that will be required to provide a global view of microbial diversity and its interaction among humans, animals, and the environment. IMPORTANCE Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive

    Effects of anthropogenic habitat disturbance and Giardia duodenalis infection on a sentinel species' gut bacteria

    Get PDF
    Habitat disturbance, a common consequence of anthropogenic land use practices, creates human–animal interfaces where humans, wildlife, and domestic species can interact. These altered habitats can influence host–microbe dynamics, leading to potential downstream effects on host physiology and health. Here, we explored the effect of ecological overlap with humans and domestic species and infection with the protozoan parasite Giardia duodenalis on the bacteria of black and gold howler monkeys (Alouatta caraya), a key sentinel species, in northeastern Argentina. Fecal samples were screened for Giardia duodenalis infection using a nested PCR reaction, and the gut bacterial community was characterized using 16S rRNA gene amplicon sequencing. Habitat type was correlated with variation in A. caraya gut bacterial community composition but did not affect gut bacterial diversity. Giardia presence did not have a universal effect on A. caraya gut bacteria across habitats, perhaps due to the high infection prevalence across all habitats. However, some bacterial taxa were found to vary with Giardia infection. While A. caraya's behavioral plasticity and dietary flexibility allow them to exploit a range of habitat conditions, habitats are generally becoming more anthropogenically disturbed and, thus, less hospitable. Alterations in gut bacterial community dynamics are one possible indicator of negative health outcomes for A. caraya in these environments, since changes in host–microbe relationships due to stressors from habitat disturbance may lead to negative repercussions for host health. These dynamics are likely relevant for understanding organism responses to environmental change in other mammals.Fil: Kuthyar, Sahana. Northwestern University; Estados UnidosFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); Argentina. University of Emory; Estados UnidosFil: Roellig, Dawn. Centers For Disease Control And Prevention. National Center For Infectious Diseases; Estados UnidosFil: Mallot, Elizabeth K. Northwestern University; Estados UnidosFil: Zeng, Yan. Northwestern University; Estados UnidosFil: Gillespie, Thomas R. University of Emory; Estados UnidosFil: Amato, Katherine. Northwestern University; Estados Unido

    The Role of Body Adiposity Index in Determining Body Fat Percentage in Colombian Adults with Overweight or Obesity

    Get PDF
    The aim of this study is to investigate the accuracy of body adiposity index (BAI) as a convenient tool for assessing body fat percentage (BF%) in a sample of adults with overweight/obesity using bioelectrical impedance analysis (BIA). The study population was composed of 96 volunteers (60% female, mean age 40.6 ± 7.5 years old). Anthropometric characteristics (body mass index, height, waist-to-height ratio, hip and waist circumference), socioeconomic status, and diet were assessed, and BF% was measured by BIA-BF% and by BAI-BF%. Pearson’s correlation coefficient was used to evaluate the correlation between BAI-BF% and BF% assessed by BIA-BF%, while controlling for potential confounders. The concordance between the BF% measured by both methods was obtained with a paired sample t-test, Lin’s concordance correlation coefficient, and Bland-Altman plot analysis. Overall, the correlation between BF% obtained by BIA-BF% and estimated by BAI-BF% was r = 0.885, p < 0.001, after adjusting for potential confounders (age, socioeconomic status, and diet). Lin’s concordance correlation coefficient was moderate in both sexes. In the men, the paired t-test showed a significant mean difference in BF% between the methods (−5.6 (95% CI −6.4 to −4.8); p < 0.001). In the women, these differences were (−3.6 (95% CI −4.7 to −2.5); p < 0.001). Overall, the bias of the BAI-BF% was −4.8 ± 3.2 BF%; p < 0.001), indicating that the BAI-BF% method significantly underestimated the BF% in comparison with the reference method. In adults with overweight/obesity, the BAI presents low agreement with BF% measured by BIA-BF%; therefore, we conclude that BIA-BF% is not accurate in either sex when body fat percentage levels are low or high. Further studies are necessary to confirm our findings in different ethnic groups.This study forms part of the project entitled “High Intensity Interval- vs. Resistance or Combined- Training to Improve Cardiometabolic Health in Overweight Adults: Cardiometabolic HIIT-RT Study ClinicalTrials.gov Identifier: NTC02715063”, funded by the Centre for Studies on Measurement of Physical Activity, School of Medicine and Health Sciences, Universidad del Rosario (Code N° FIUR DN-BG001)

    The Internal, External and Extended Microbiomes of Hominins

    Get PDF
    The social structure of primates has recently been shown to influence the composition of their microbiomes. What is less clear is how primate microbiomes might in turn influence their social behavior, either in general or with particular reference to hominins. Here we use a comparative approach to understand how microbiomes of hominins have, or might have, changed since the last common ancestor (LCA) of chimpanzees and humans, roughly six million years ago. We focus on microbiomes associated with social evolution, namely those hosted or influenced by stomachs, intestines, armpits, and food fermentation. In doing so, we highlight the potential influence of microbiomes in hominin evolution while also offering a series of hypotheses and questions with regard to evolution of human stomach acidity, the factors structuring gut microbiomes, the functional consequences of changes in armpit ecology, and whether Homo erectus was engaged in fermentation. We conclude by briefly considering the possibility that hominin social behavior was influenced by prosocial microbes whose fitness was favored by social interactions among individual hominins

    Using the gut microbiota as a novel tool for examining colobine primate GI health

    Get PDF
    Primates of the Colobinae subfamily are highly folivorous. They possess a sacculated foregut and are believed to rely on a specialized gut microbiota to extract sufficient energy from their hard-to-digest diet. Although many colobines are endangered and would benefit from captive breeding programs, maintaining healthy captive populations of colobines can be difficult since they commonly suffer from morbidity and mortality due to gastrointestinal (GI) distress of unknown cause. While there is speculation that this GI distress may be associated with a dysbiosis of the gut microbiota, no study has directly examined the role of the gut microbiota in colobine GI health. In this study, we used high-throughput sequencing to examine the gut microbiota of three genera of colobines housed at the San Diego Zoo: doucs (Pygathrix) (N=7), colobus monkeys (Colobus) (N=4), and langurs (Trachypithecus) (N=5). Our data indicated that GI-healthy doucs, langurs, and colobus monkeys possess a distinct gut microbiota. In addition, GI-unhealthy doucs exhibited a different gut microbiota compared to GI-healthy individuals, including reduced relative abundances of anti-inflammatory Akkermansia. Finally, by comparing samples from wild and captive Asian colobines, we found that captive colobines generally exhibited higher relative abundances of potential pathogens such as Desulfovibrio and Methanobrevibacter compared to wild colobines, implying an increased risk of gut microbial dysbiosis. Together, these results suggest an association between the gut microbiota and GI illness of unknown cause in doucs. Further studies are necessary to corroborate these findings and determine cause-and-effect relationships. Additionally, we found minimal variation in the diversity and composition of the gut microbiota along the colobine GI tract, suggesting that fecal samples may be sufficient for describing the colobine gut microbiota. If these findings can be validated in wild individuals, it will facilitate the rapid expansion of colobine gut microbiome research

    Biodiversity of protists and nematodes in the wild nonhuman primate gut

    Get PDF
    Documenting the natural diversity of eukaryotic organisms in the nonhuman primate (NHP) gut is important for understanding the evolution of the mammalian gut microbiome, its role in digestion, health and disease, and the consequences of anthropogenic change on primate biology and conservation. Despite the ecological significance of gut-associated eukaryotes, little is known about the factors that influence their assembly and diversity in mammals. In this study, we used an 18S rRNA gene fragment metabarcoding approach to assess the eukaryotic assemblage of 62 individuals representing 16 NHP species. We find that cercopithecoids, and especially the cercopithecines, have substantially higher alpha diversity than other NHP groups. Gut-associated protists and nematodes are widespread among NHPs, consistent with their ancient association with NHP hosts. However, we do not find a consistent signal of phylosymbiosis or host-species specificity. Rather, gut eukaryotes are only weakly structured by primate phylogeny with minimal signal from diet, in contrast to previous reports of NHP gut bacteria. The results of this study indicate that gut-associated eukaryotes offer different information than gut-associated bacteria and add to our understanding of the structure of the gut microbiome.Fil: Mann, Allison E.. University of British Columbia; CanadáFil: Mazel, Florent. University of British Columbia; CanadáFil: Lemay, Matthew A.. University of British Columbia; CanadáFil: Morien, Evan. University of British Columbia; CanadáFil: Billy, Vincent. University of British Columbia; CanadáFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); ArgentinaFil: Di Fiore, Anthony. University of Texas at Austin; Estados UnidosFil: Link, Andrés. Universidad de los Andes; ColombiaFil: Goldberg, Tony L.. University of Wisconsin; Estados UnidosFil: Tecot, Stacey. University of Arizona; Estados UnidosFil: Baden, Andrea L.. City University Of New York. Hunter College; Estados UnidosFil: Gomez, Andres. University of Minnesota; Estados UnidosFil: Sauther, Michelle L.. State University of Colorado at Boulder; Estados UnidosFil: Cuozzo, Frank P.. Lajuma Research Centre; SudáfricaFil: Rice, Gillian A. O.. Dartmouth College; Estados UnidosFil: Dominy, Nathaniel J.. Dartmouth College; Estados UnidosFil: Stumpf, Rebecca. University of Illinois at Urbana; Estados UnidosFil: Lewis, Rebecca J.. University of Texas at Austin; Estados UnidosFil: Swedell, Larissa. University of Cape Town; Sudáfrica. City University of New York; Estados UnidosFil: Amato, Katherine. Northwestern University; Estados UnidosFil: Wegener Parfrey, Laura. University of British Columbia; Canad

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.Fil: Eppley, Timothy M.. San Diego Zoo Wildlife Alliance; Estados Unidos. Portland State University; Estados UnidosFil: Hoeks, Selwyn. Radboud Universiteit Nijmegen; Países BajosFil: Chapman, Colin A.. University of KwaZulu-Natal; Sudáfrica. Wilson Center; Estados Unidos. Northwest University; China. The George Washington University; Estados UnidosFil: Ganzhorn, Jörg U.. Universitat Hamburg; AlemaniaFil: Hall, Katie. Sedgwick County Zoo; Estados UnidosFil: Owen, Megan A.. San Diego Zoo Wildlife Alliance; Estados UnidosFil: Adams, Dara B.. Humboldt State University; Estados Unidos. Ohio State University; Estados UnidosFil: Allgas, Néstor. Asociación Neotropical Primate Conservation Perú; PerúFil: Amato, Katherine R.. Northwestern University; Estados UnidosFil: Andriamahaihavana, McAntonin. Université D'antananarivo; MadagascarFil: Aristizabal, John F.. Universidad Autónoma de Ciudad Juárez; México. Universidad de los Andes; ColombiaFil: Baden, Andrea L.. City University of New York; Estados Unidos. New York Consortium In Evolutionary Primatology; Estados UnidosFil: Balestri, Michela. Oxford Brookes University (oxford Brookes University);Fil: Barnett, Adrian A.. University Of Roehampton; Reino Unido. Universidade Federal de Pernambuco; BrasilFil: Bicca Marques, Júlio César. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Bowler, Mark. University Of Suffolk; Reino Unido. San Diego Zoo Wildlife Alliance; Estados UnidosFil: Boyle, Sarah A.. Rhodes College; Estados UnidosFil: Brown, Meredith. University of Calgary; CanadáFil: Caillaud, Damien. University of California at Davis; Estados UnidosFil: Calegaro Marques, Cláudia. Universidade Federal do Rio Grande do Sul; BrasilFil: Campbell, Christina J.. California State University Northridge (calif. State Univ. Northridge);Fil: Campera, Marco. Oxford Brookes University (oxford Brookes University);Fil: Campos, Fernando A.. University of Texas at San Antonio; Estados UnidosFil: Cardoso, Tatiane S.. Museu Paraense Emílio Goeldi; BrasilFil: Carretero Pinzón, Xyomara. Proyecto Zocay; ColombiaFil: Champion, Jane. University of Calgary; CanadáFil: Chaves, Óscar M.. Universidad de Costa Rica; Costa RicaFil: Chen Kraus, Chloe. University of Yale; Estados UnidosFil: Colquhoun, Ian C.. Western University; CanadáFil: Dean, Brittany. University of Calgary; CanadáFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); Argentin
    corecore