1,618 research outputs found

    Interpretation of High Energy String Scattering in terms of String Configurations

    Full text link
    High energy string scattering at fixed momentum transfer, known to be dominated by Regge trajectory exchange, is interpreted by identifying families of string states which induce each type of trajectory exchange. These include the usual leading trajectory α(t)=αâ€Čt+1\alpha(t)=\alpha^\prime t+1 and its daughters as well as the ``sister'' trajectories αm(t)=α(t)/m−(m−1)/2\alpha_m(t)=\alpha(t)/m-(m-1)/2 and their daughters. The contribution of the sister αm\alpha_m to high energy scattering is dominated by string excitations in the mthm^{th} mode. Thus, at large −t-t, string scattering is dominated by wee partons, consistently with a picture of string as an infinitely composite system of ``constituents'' which carry zero energy and momentum.Comment: 14 pages, phyzzx, psfig required, Florida Preprint UFIFT-94-

    Classical Effective Field Theory for Weak Ultra Relativistic Scattering

    Full text link
    Inspired by the problem of Planckian scattering we describe a classical effective field theory for weak ultra relativistic scattering in which field propagation is instantaneous and transverse and the particles' equations of motion localize to the instant of passing. An analogy with the non-relativistic (post-Newtonian) approximation is stressed. The small parameter is identified and power counting rules are established. The theory is applied to reproduce the leading scattering angle for either a scalar interaction field or electro-magnetic or gravitational; to compute some subleading corrections, including the interaction duration; and to allow for non-zero masses. For the gravitational case we present an appropriate decomposition of the gravitational field onto the transverse plane together with its whole non-linear action. On the way we touch upon the relation with the eikonal approximation, some evidence for censorship of quantum gravity, and an algebraic ring structure on 2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec 4 and detailed in App C. Version accepted for publication in JHE

    On the Zero-Slope Limit of the Compactified Closed Bosonic String

    Full text link
    In the framework of the compactified closed bosonic string theory with the extra spatial coordinates being circular with radius RR, we perform both the zero-slope limit and the R→0R \rightarrow 0 limit of the tree scattering amplitude of four massless scalar particles. We explicitly show that this double limit leads to amplitudes involving scalars which interact through the exchange of a scalar, spin 1 and spin 2 particle. In particular, this latter case reproduces the same result obtained in linearized quantum gravity.Comment: 10 pages, LaTex file, DSF-T-43/9

    Teaching a New Dog Old Tricks: Resurrecting Multilingual Retrieval Using Zero-shot Learning

    Full text link
    While billions of non-English speaking users rely on search engines every day, the problem of ad-hoc information retrieval is rarely studied for non-English languages. This is primarily due to a lack of data set that are suitable to train ranking algorithms. In this paper, we tackle the lack of data by leveraging pre-trained multilingual language models to transfer a retrieval system trained on English collections to non-English queries and documents. Our model is evaluated in a zero-shot setting, meaning that we use them to predict relevance scores for query-document pairs in languages never seen during training. Our results show that the proposed approach can significantly outperform unsupervised retrieval techniques for Arabic, Chinese Mandarin, and Spanish. We also show that augmenting the English training collection with some examples from the target language can sometimes improve performance.Comment: ECIR 2020 (short

    D-Brane Interactions in a Gravitational Shock Wave Background

    Full text link
    We study D-branes in the background of a gravitational shock wave. We consider the case of parallel D-branes located on opposite sides with respect to the shock wave. Their interaction is studied by evaluating the cylinder diagram using the boundary states technique. Boundary states are defined at each D-brane and their scalar product is evaluated after propagation through the shock wave. Taking the limit where the gravitational shock wave vanishes we show that the amplitude evaluated is consistent with the flat space-time result.Comment: To be published in Modern Physics Letters A, revised version with references added, 12 page

    Hamiltonian BRST Quantization of the Conformal String

    Full text link
    We present a new formulation of the tensionless string (T=0T= 0) where the space-time conformal symmetry is manifest. Using a Hamiltonian BRST scheme we quantize this {\em Conformal String} and find that it has critical dimension D=2D=2. This is in keeping with our classical result that the model describes massless particles in this dimension. It is also consistent with our previous results which indicate that quantized conformally symmetric tensionless strings describe a topological phase away {}from D=2D=2. We reach our result by demanding nilpotency of the BRST charge and consistency with the Jacobi identities. The derivation is presented in two different ways: in operator language and using mode expansions. Careful attention is payed to regularization, a crucial ingredient in our calculations.Comment: 33pp (LaTeX), USITP-94-0

    Contemporaneous Statistics for Estimation in Stochastic Actor-Oriented Co-evolution Models

    Get PDF
    Stochastic actor-oriented models (SAOMs) can be used to analyse dynamic network data, collected by observing a network and a behaviour in a panel design. The parameters of SAOMs are usually estimated by the method of moments (MoM) implemented by a stochastic approximation algorithm, where statistics defining the moment conditions correspond in a natural way to the parameters. Here, we propose to apply the generalized method of moments (GMoM), using more statistics than parameters. We concentrate on statistics depending jointly on the network and the behaviour, because of the importance of their interdependence, and propose to add contemporaneous statistics to the usual cross-lagged statistics. We describe the stochastic algorithm developed to approximate the GMoM solution. A small simulation study supports the greater statistical efficiency of the GMoM estimator compared to the MoM

    Gamma-Ray Bursts in the Afterglow Era: 4th Workshop

    Get PDF
    We introduce the volume that collects the papers presented at the 4th Workshop Gamma-Ray Bursts in the Afterglow Era, held in Rome on October 18-22, 2004. After a general introduction and description of theWorkshop, we briefly review the hot topics in GRB science which were discussed during the conference and are the subject of many articles included in these proceedings. Finally, we focus on future prospects for GRB science at the beginning of the Swift era and beyond
    • 

    corecore