12 research outputs found

    Spatial variability in the growth of invasive European barbel Barbus barbus in the River Severn basin, revealed using anglers as citizen scientists

    Get PDF
    Life history trait analyses of non-native fishes help identify how novel populations respond to different habitat typologies. Here, using electric fishing and anglers as citizen scientists, scales were collected from the invasive barbel Barbus barbus population from four reaches of the River Severn and Teme, western England. Angler samples were biased towards larger fish, with the smallest fish captured being 410 mm, whereas electric fishing sampled fish down to 60 mm. Scale ageing revealed fish present to over 20 years old in both rivers. Juvenile growth rates were similar across all reaches. Lengths at the last annulus and Linfinity of the von Bertalanffy growth model revealed, however, that fish grew to significantly larger body sizes in a relatively deep and highly impounded reach of the River Severn. Anglers thus supplemented the scale collection and although samples remained limited in number, they provided considerable insights into the spatial demographics of this invasive B. barbus population

    Predicting the ecological impacts of an alien invader: experimental approaches reveal the trophic consequences of competition

    Get PDF
    1. Ecological theory on the trophic impacts of invasive fauna on native competitors is equivocal. While increased inter-specific competition can result in coexisting species having constricted and diverged trophic niches, the competing species might instead increase their niche sizes to maintain energy intakes. Empirical experiments can test invasion theory on competitive interactions and niche sizes across different spatial scales and complexity. 2. The consequences of increased inter-specific competition from a model alien fish Leuciscus idus were tested on two taxonomically and trophically similar native fishes, Squalius cephalus and Barbus barbus. Competitive interactions were tested in tank aquaria using comparative functional responses (CFRs) and cohabitation trials. The consequences of these competitive interactions for the trophic niche sizes and positions of the fishes were tested in pond mesocosms. 3. CFRs revealed that compared to B. barbus, L. idus had significantly higher attack and consumption rates; cohabitation trials revealed B. barbus growth rates were depressed in sympatry with L. idus. For L. idus and S. cephalus, differences in their functional response parameters and growth rates were not significant. 4. Pond mesocosms used stable isotope metrics to quantify shifts in the trophic niche sizes of the fishes between allopatry and sympatry using a substitutive experimental design. Isotopic niches were smaller and more divergent in sympatric paired species than predicted by their allopatric treatments, suggesting trophic impacts from inter-specific competition. However, an all-species sympatric treatment revealed similar niche sizes with allopatry. This maintenance of niche sizes in the presence of all species potentially resulted from the buffering of direct competitive effects of the species-pairs by indirect effects. 5. Experimental predictions from tank aquaria assisted the interpretation of the constricted and diverged trophic niches detected in the paired-species sympatric treatments of the pond mesocosms. However, the all-species sympatric treatment of this experiment revealed greater complexity in the outcomes of the competitive interactions within and between the species. These results have important implications for understanding how alien species integrate into food webs and influence the trophic relationships between native species

    Variability in population traits of a sentinel iberian fish in a highly modified mediterranean-type river

    Get PDF
    Human pressures on water resources have been suggested as a driver of biological traits that induce changes in native fish populations. This study highlighted the interplay between environmental stress factors, mostly related to flow regulation, and the longitudinal river gradient in biological traits such as the growth, size structure and somatic condition of a sentinel fish, Luciobarbus sclateri. We found an increase in size-related metrics and somatic condition at population levels associated with downstream reaches, although fragmentation and habitat alteration, flow regime alteration and the abundance of non-native fish were also significantly involved in their variability. Age-related parameters and growth were only explained by flow regime alterations and the abundance of non-native fish species. The high plasticity observed in L. sclateri population traits suggests that this is a key factor in the species adaptability to resist in a strongly altered Mediterranean river basin. However, the interplay of multiple stressors plays an important role in fish population dynamics and could induce complex responses that may be essential for long-term monitoring in sentinel species

    Behavioural thermoregulation in cold-water freshwater fish: Innate resilience to climate warming?

    Get PDF
    Behavioural thermoregulation enables ectotherms to access habitats providing condi-tions within their temperature optima, especially in periods of extreme thermal condi-tions, through adjustments to their behaviours that provide a “whole- body” response to temperature changes. Although freshwater fish have been detected as moving in response to temperature changes to access habitats that provide their thermal optima, there is a lack of integrative studies synthesising the extent to which this is driven by behaviour across different species and spatial scales. A quantitative global synthesis of behavioural thermoregulation in freshwater fish revealed that across 77 studies, behavioural thermoregulatory movements by fish were detected both vertically and horizontally, and from warm to cool waters and, occasionally, the converse. When fish moved from warm to cooler habitats, the extent of the temperature difference between these habitats decreased with increasing latitude, with juvenile and non- migratory fishes tolerating greater temperature differences than adult and anadro-mous individuals. With most studies focused on assessing movements of cold-water salmonids during summer periods, there remains an outstanding need for work on cli-matically vulnerable, non-salmonid fishes to understand how these innate thermoreg-ulatory behaviours could facilitate population persistence in warming conditions

    Parasite infection but not chronic microplastic exposure reduces the feeding rate in a freshwater fish.

    Get PDF
    Microplastics (plastics <5 mm) are an environmental contaminant that can negatively impact the behaviour and physiology of aquatic biota. Although parasite infection can also alter the behaviour and physiology of their hosts, few studies have investigated how microplastic and parasite exposure interact to affect hosts. Accordingly, an interaction experiment tested how exposure to environmentally relevant microplastic concentrations and the trophically transmitted parasite Pomphorhynchus tereticollis affected the parasite load, condition metrics and feeding rate of the freshwater fish final host chub Squalius cephalus. Microplastic exposure was predicted to increase infection susceptibility, resulting in increased parasite loads, whereas parasite and microplastic exposure were expected to synergistically and negatively impact condition indices and feeding rates. Following chronic (≈170 day) dietary microplastic exposure, fish were exposed to a given number of gammarids (4/8/12/16/20), with half of the fish presented with parasite infected individuals, before a comparative functional response experiment tested differences in feeding rates on different live prey densities. Contrary to predictions, dietary microplastic exposure did not affect parasite abundance at different levels of parasite exposure, specific growth rate was the only condition index that was lower for exposed but unexposed fish, with no single or interactive effects of microplastic exposure detected. However, parasite infected fish had significantly lower feeding rates than unexposed fish in the functional response experiment, with exposed but unexposed fish also showing an intermediate decrease in feeding rates. Thus, the effects of parasitism on individuals were considerably stronger than microplastic exposure, with no evidence of interactive effects. Impacts of environmentally relevant microplastic levels might thus be relatively minor versus other stressors, with their interactive effects difficult to predict based on their single effects

    Variability in the summer movements, habitat use and thermal biology of two fish species in a temperate river

    Get PDF
    The ability of fish to cope with warm water temperatures in summer depends on factors including their thermal traits and the ability of individuals to access cool-water refugia. Knowledge is highly limited on the in situ responses of many fishes to elevated summer temperatures, including whether they express behavioural thermoregulation. The responses of two riverine species to summer water temperatures were tested here using the movement metrics, spatial habitat use and body temperatures of individual European barbel Barbus barbus (‘barbel’) and common bream Abramis brama (‘bream’) versus river temperatures. Acoustic biotelemetry was applied in the lower River Severn basin, western Britain, in summer 2021 (barbel) and 2022 (bream), where individuals could move across > 150 km of river, including a tributary of cooler water. Across all individuals, bream occupied 37 km of river length (mainstem only), with low inter-individual variability in their spatial habitat use, movements and body temperatures. In contrast, barbel occupied 62 km of river (main river/tributary), with relatively high inter-individual variability in spatial habitat use, movements and body temperatures, with higher variation in body temperatures as river temperatures increased (maximum mean daily temperature difference between individuals on the same day: 4.2 °C). Although warmer individuals generally moved more, their activity was greatest at relatively low temperatures and higher flows, and neither species revealed any evidence of behavioural thermoregulation during elevated temperatures. Enabling phenotypically diverse fish populations to express their natural behaviours and thermal preferences in summer water temperatures thus requires maintaining their free-ranging in thermally heterogenous habitats

    Data from: Trophic consequences of introduced species: comparative impacts of increased inter-specific versus intra-specific competitive interactions

    No full text
    1. Invasive species can cause substantial ecological impacts on native biodiversity. Whilst ecological theory attempts to explain the processes involved in the trophic integration of invaders into native food webs and their competitive impacts on resident species, results are equivocal. In addition, quantifying the relative strength of impacts from non-native species (inter-specific competition) versus the release of native conspecifics (intra-specific competition) is important but rarely completed. 2. Two model non-native fishes, the globally invasive Cyprinus carpio and Carassius auratus, and the model native fish Tinca tinca, were used in a pond experiment to test how increased intra- and inter-specific competition influenced trophic niches and somatic growth rates. This was complemented by samples collected from three natural fish communities where the model fishes were present. The isotopic niche, calculated using stable isotope data, represented the trophic niche. 3. The pond experiment used additive and substitutive treatments to quantify the trophic niche variation that resulted from intra- and inter-specific competitive interactions. Although the trophic niche sizes of the model species were not significantly altered by any competitive treatment, they all resulted in patterns of inter-specific niche divergence. Increased inter-specific competition caused the trophic niche of T. tinca to shift to a significantly higher trophic position, whereas intra-specific competition caused its position to shift towards elevated δ13C. These patterns were independent of impacts on fish growth rates, which were only significantly altered when inter-specific competition was elevated. 4. In the natural fish communities, patterns of trophic niche partitioning between the model fishes was evident, with no niche sharing. Comparison of these results with those of the experiment revealed the most similar results between the two approaches were for the niche partitioning between sympatric T. tinca and C. carpio. 5. These results indicate that trophic niche divergence facilitates the integration of introduced species into food webs, but there are differences in how this manifests between introductions that increase inter- and intra-specific competition. In entirety, these results suggest that the initial ecological response to an introduction appears to be a trophic re-organisation of the food web that minimises the trophic interactions between competing species

    Trophic consequences for riverine cyprinid fishes of angler subsidies based on marine derived nutrients.

    Get PDF
    1. The crossing of freshwater ecosystem boundaries by marine derived nutrients (MDN) is usually associated with migratory salmonid fishes returning to natal rivers. An alternative source of MDN in freshwaters is the widespread use of pelletized marine fishmeal (‘pellets’) by freshwater anglers as they target large bodied cyprinid fishes, such as European barbel Barbus barbus. 2. Here, the trophic consequences of MDN from pellets for riverine cyprinid fishes were tested. Approaches used stable isotope analyses in controlled and wild scenarios, using B. barbus and chub Squalius cephalus as model species. The isotopic niche, measured as standard ellipse area, was used to assess trophic niche size, and mixing models predicted the extent to which MDN contributed to fish diet. 3. In experimental mesocosms, B. barbus fed low volumes of pellets (approximately 3 per fish) for 130 days had isotopic niche sizes that were up to four times larger than a control and ‘medium’ (6 per fish) and ‘high’ pellet (12 per fish) treatments. Somatic growth rates were significantly higher in the ‘medium’ and ‘high’ treatments. In pond enclosure experiments, when juvenile B. barbus and S. cephalus were fed pellets daily for 100 days, there was a substantial and significant shift in the position of their isotopic niche compared to controls with no pellets fed. However, for each species, there were no significant differences in their somatic growth rates in the presence/ absence of pellets. 4. In a lowland river, high proportions of MDN contributed to the diet of B. barbus and S. cephalus captured by angling, but with substantial individual variability in those captured by electric fishing. Across all B. barbus > 400 mm, MDN dietary contributions ranged between 9 and 71%. This suggested some individual diet specialisations within their population that was associated with feeding on this angler subsidy and that also resulted in a significant increase in the size of their population isotopic niche. 5. These results suggested that when pellets containing MDN are used in freshwater angling, they are consumed and assimilated by cyprinid fishes, influencing individual and population trophic positions, and isotopic niche sizes and dietary specialisations. The results also suggested that the extent to which individuals specialise in feeding on pellets potentially influences their vulnerability to capture by anglers

    Britton et al. data predicting invaders

    No full text
    Data for 'Predicting the ecological impacts of an alien invader: experimental approaches reveal the trophic consequences of competition

    Britton et al. Functional Ecology

    No full text
    Data for experiment of Britton et al. 2017, 'Trophic consequences of introduced species: comparative impacts of increased inter-specific versus intra-specific competitive interactions
    corecore