5,868 research outputs found

    Heterogeneity in evolutionary games: an analysis of the risk perception

    Get PDF
    In this study, we analyse the relationship between heterogeneity and cooperation. Previous investigations suggest that this relation is non-trivial, as some authors found that heterogeneity sustains cooperation, while others obtained different results. Among the possible forms of heterogeneity, we focus on the individual perception of risks and rewards related to a generic event, which can appear in a number of social and biological systems. The modelling approach is based on the framework of evolutionary game theory. To represent this kind of heterogeneity, we implement small and local perturbations on the pay-off matrix of simple two-strategy games, such as the Prisoner’s Dilemma. So, while usually the pay-off is considered to be a global and time-invariant structure, i.e. it is the same for all individuals of a population at any time, in our model its value is continuously affected by small variations, in both time and space (i.e. position on a lattice). We found that such perturbations can be beneficial or detrimental to cooperation, depending on their setting. Notably, cooperation is strongly supported when perturbations act on the main diagonal of the pay-off matrix, whereas when they act on the off-diagonal the resulting effect is more difficult to quantify. To conclude, the proposed model shows a rich spectrum of possible equilibria, whose interpretation might offer insights and enrich the description of several systems

    Strategy equilibrium in dilemma games with off-diagonal payoff perturbations

    Get PDF
    We analyze the strategy equilibrium of dilemma games considering a payoff matrix affected by small and random perturbations on the off-diagonal. Notably, a recent work [Proc. R. Soc. A 476, 20200116 (2020)] reported that while cooperation is sustained by perturbations acting on the main diagonal, a less clear scenario emerges when perturbations act on the off-diagonal. Thus, the second case represents the core of this investigation, aimed at completing the description of the effects that payoff perturbations have on the dynamics of evolutionary games. Our results, achieved by analyzing the proposed model under a variety of configurations as different update rules, suggest that off-diagonal perturbations actually constitute a nontrivial form of noise. In particular, the most interesting effects are detected near the phase transition, as perturbations tend to move the strategy distribution towards nonordered states of equilibrium, supporting cooperation when defection is pervading the population, and supporting defection in the opposite case. To conclude, we identified a form of noise that, under controlled conditions, could be used to enhance cooperation and greatly delay its extinction

    An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics

    Get PDF
    During pandemic events, strategies such as social distancing can be fundamental to curb viral spreading. Such actions can reduce the number of simultaneous infections and mitigate the disease spreading, which is relevant to the risk of a healthcare system collapse. Although these strategies can be suggested, their actual implementation may depend on the population perception of the disease risk. The current COVID-19 crisis, for instance, is showing that some individuals are much more prone than others to remain isolated, avoiding unnecessary contacts. With this motivation, we propose an epidemiological SIR model that uses evolutionary game theory to take into account dynamic individual quarantine strategies, intending to combine in a single process social strategies, individual risk perception, and viral spreading. The disease spreads in a population whose agents can choose between self-isolation and a lifestyle careless of any epidemic risk. The strategy adoption is individual and depends on the perceived disease risk compared to the quarantine cost. The game payoff governs the strategy adoption, while the epidemic process governs the agent's health state. At the same time, the infection rate depends on the agent's strategy while the perceived disease risk depends on the fraction of infected agents. Results show recurrent infection waves, which were seen in previous epidemic scenarios with quarantine. Notably, the risk perception is found to be fundamental for controlling the magnitude of the infection peak, while the final infection size is mainly dictated by the infection rates. Low awareness leads to a single and strong infection peak, while a greater disease risk leads to shorter, although more frequent, peaks. The proposed model spontaneously captures relevant aspects of a pandemic event, highlighting the fundamental role of social strategies

    Sampling of explosive residues: the use of a gelatine-based medium for the recovery of ammonium nitrate

    Get PDF
    Forensic scientists must be able to recover traces of any original explosive materials not consumed in the detonation, in a careful controlled manner to aid a crime reconstruction. In current sampling techniques, the collection efficiency of post-blast residue is highly variable and often dependent on the swabbing materials and solvent systems used. To address these method limitations, this study presents a gelatine-based sampling medium and assesses its capabilities for the collection of ammonium nitrate. Common surfaces were spotted with a known concentration of ammonium nitrate, the unset gel applied, allowed to set, and then peeled from the surface. The gel was dissolved, and solid phase extraction employed to isolate the target explosive compound and remove the constituents of the gel. The eluate was concentrated and subsequently analysed and quantified. Overall, the gel formulation was able to collect ammonium nitrate from all of the test surfaces, with recoveries ranging from 0.1% to 61.7%. This study presents a gelatine-based formulation that has the potential to become a valuable asset in the forensic tool kit for the collection of explosive traces. A key attribute of the gel is that it offers an alternative recovery tool to conventional swabbing and solvent extraction methods

    Functional cartography of complex metabolic networks

    Full text link
    High-throughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enables us to extract and display information contained in complex networks. Specifically, we demonstrate that one can (i) find functional modules in complex networks, and (ii) classify nodes into universal roles according to their pattern of intra- and inter-module connections. The method thus yields a ``cartographic representation'' of complex networks. Metabolic networks are among the most challenging biological networks and, arguably, the ones with more potential for immediate applicability. We use our method to analyze the metabolic networks of twelve organisms from three different super-kingdoms. We find that, typically, 80% of the nodes are only connected to other nodes within their respective modules, and that nodes with different roles are affected by different evolutionary constraints and pressures. Remarkably, we find that low-degree metabolites that connect different modules are more conserved than hubs whose links are mostly within a single module.Comment: 17 pages, 4 figures. Go to http://amaral.northwestern.edu for the PDF file of the reprin

    Extracting the hierarchical organization of complex systems

    Full text link
    Extracting understanding from the growing ``sea'' of biological and socio-economic data is one of the most pressing scientific challenges facing us. Here, we introduce and validate an unsupervised method that is able to accurately extract the hierarchical organization of complex biological, social, and technological networks. We define an ensemble of hierarchically nested random graphs, which we use to validate the method. We then apply our method to real-world networks, including the air-transportation network, an electronic circuit, an email exchange network, and metabolic networks. We find that our method enables us to obtain an accurate multi-scale descriptions of a complex system.Comment: Figures in screen resolution. Version with full resolution figures available at http://amaral.chem-eng.northwestern.edu/Publications/Papers/sales-pardo-2007.pd

    The visualisation of fingermarks on Pangolin scales using gelatine lifters

    Get PDF
    Recent media reports document the plight of the Pangolin and its current position as “the most trafficked mammal in the world”. They are described by some as scaly anteaters as all species are covered in hard keratinous tissue in the form of overlapping scales acting as a “flexible dermal armour”. It is estimated that between 2011 and 2013, 117,000–234,000 pangolins were slaughtered, but the seizures may only represent as little as 10% of the true volume of pangolins being illegally traded. In this paper, methods to visualise fingermarks on Pangolin scales using gelatine lifters is presented. The gelatine lifters provide an easy to use, inexpensive but effective method to help wildlife crime rangers across Africa and Asia to disrupt the trafficking. The gelatine lifting process visualised marks producing clear ridge detail on 52% of the Pangolin scales examined, with a further 30% showing the impression of a finger with limited ridge detail. The paper builds on an initial sociotechnical approach to establishing requirement, then it focuses on the methods and outcomes relating to lifting fingermarks off Pangolin scales using gelatine lifters, providing an evaluation of its use in practice

    Statistical Laws Governing Fluctuations in Word Use from Word Birth to Word Death

    Get PDF
    We analyze the dynamic properties of 10^7 words recorded in English, Spanish and Hebrew over the period 1800--2008 in order to gain insight into the coevolution of language and culture. We report language independent patterns useful as benchmarks for theoretical models of language evolution. A significantly decreasing (increasing) trend in the birth (death) rate of words indicates a recent shift in the selection laws governing word use. For new words, we observe a peak in the growth-rate fluctuations around 40 years after introduction, consistent with the typical entry time into standard dictionaries and the human generational timescale. Pronounced changes in the dynamics of language during periods of war shows that word correlations, occurring across time and between words, are largely influenced by coevolutionary social, technological, and political factors. We quantify cultural memory by analyzing the long-term correlations in the use of individual words using detrended fluctuation analysis.Comment: Version 1: 31 pages, 17 figures, 3 tables. Version 2 is streamlined, eliminates substantial material and incorporates referee comments: 19 pages, 14 figures, 3 table
    corecore