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Strategy equilibrium in dilemma games with off-diagonal payoff perturbations
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We analyze the strategy equilibrium of dilemma games considering a payoff matrix affected by small
and random perturbations on the off-diagonal. Notably, a recent work [Proc. R. Soc. A 476, 20200116
(2020)] reported that while cooperation is sustained by perturbations acting on the main diagonal, a less clear
scenario emerges when perturbations act on the off-diagonal. Thus, the second case represents the core of this
investigation, aimed at completing the description of the effects that payoff perturbations have on the dynamics
of evolutionary games. Our results, achieved by analyzing the proposed model under a variety of configurations
as different update rules, suggest that off-diagonal perturbations actually constitute a nontrivial form of noise.
In particular, the most interesting effects are detected near the phase transition, as perturbations tend to move
the strategy distribution towards nonordered states of equilibrium, supporting cooperation when defection is
pervading the population, and supporting defection in the opposite case. To conclude, we identified a form of
noise that, under controlled conditions, could be used to enhance cooperation and greatly delay its extinction.
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I. INTRODUCTION

Perturbative methods find large utilization for studying a
number of problems in physics, spanning from classical to
quantum mechanics [1,2]. Furthermore, as we know from the
theory of chaos [3], even small perturbations can have drastic
effects on the dynamics of some systems, as those particularly
sensible to initial conditions. The logistic map, for instance,
is very useful for studying these phenomena. Also, the theory
of chaos has the merit to have widely popularized fascinating
results, such as the so-called “butterfly effect,” being currently
mentioned both in books and movies (e.g., [4]), although
sometimes without proper scientific care.

Perturbations have also been used in evolutionary game
theory for studying the emergence of cooperation [5–7], as
recently reported in [8]. Notably, the latter shows that small
and random perturbations on the payoff matrix of social
dilemmas can strongly influence the strategy equilibrium of a
population. However, while their effect on the main diagonal
has been clarified, i.e., they support cooperative behaviors,
the effect given by off-diagonal perturbations is still unclear.
Thus, here we aim to clarify this specific aspect of the per-
turbative method presented in [8] and to obtain a complete
description of the dynamics of evolutionary games, affected
by small and random perturbations on their payoff matrix.
To this end, our analyses consider a variety of conditions,
as three different update rules, and various games (e.g., stag
hunt, snowdrift, and harmony). For the sake of clarity and for
making the manuscript self-contained, the main model is fully
described in the following section, with all relevant informa-
tion. Before moving further, let us give a brief introduction on
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the framework of evolutionary game theory (hereafter EGT)
that we use for our investigation.

EGT is a suitable framework to study the emergence
of cooperation among selfish individuals [9–11]. While co-
operation still represents a lively challenge [12], EGT has
given many important insights on how such a phenomenon
can spontaneously emerge at many scales in biological and
social systems. Among the most studied mechanisms are kin
selection [13], direct and indirect reciprocity [14,15], network
reciprocity [16–19], group selection [20], and heterogene-
ity [21–25]. Specifically, heterogeneity (sometimes dubbed as
diversity) was found to be a fundamental element for support-
ing cooperative behaviors in evolutionary systems [26,27]. A
group composed of individuals with different skills can easily
become more effective in several challenges. At the same
time, group diversity can shield the possible flaws of individ-
ual members while sustaining the whole group in a synergetic
manner. This rationale has been applied to economies, enter-
prise communities, vaccination models, and even in biological
evolution [26,28–31]. It also represents a fundamental aspect
in genetic algorithms as well [32], whose core mechanism is
based on a heterogeneous population of candidate solutions
that evolve towards a (sub)optimal solution. In EGT, hetero-
geneity can be related to different aspects of a game, e.g.,
incentives, interaction topology, learning rates, and dynamics.
Previous investigations, such as [22,29,33–38], showed that
heterogeneity can support cooperative behaviors in many
competitive scenarios. At the same time, other studies such
as [39] reported that heterogeneous networks do not promote
cooperation when humans play the prisoner’s dilemma. As
another example, findings reported in [40] show a relationship
between the group size of a community and its heterogeneity.
This rich spectrum of results highlights the need to fur-
ther study this subject and to fully understand its range of
effects.
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As observed in [8], perturbations on the payoff matrix of
dilemma games actually are responsible for a form of popula-
tion heterogeneity, as they provide players with a diversified
perception of risks and rewards. For this reason our investi-
gation, while focused on clarifying the role of perturbations
in social dilemmas, can provide findings of potential interest
for the debate on the relationships between heterogeneity and
cooperation in evolutionary games.

Also, the relevance of studying the effects of a heteroge-
neous risk perception is particularly motivated by a simple
fact of everyday life, e.g., individuals facing the same situ-
ation will have different risk perceptions [11,41,42]. EGT’s
mathematical framework has proven to be invaluable to char-
acterize the general aspects of decision-making conflicts,
creating general game classes to do so. Nevertheless, a core
concept of such game classes, the perceived payoff, is still a
subjective quantity, one that cannot be directly measured in
most contexts (with the obvious exception of totally rational
financial trades). In this sense, understanding the core aspects
of a system with fluctuating perceived payoffs could lead to
the understanding of general behaviors even when the exact
perceived payoffs are unknown. This is the usual case of
animal conflicts, where a fixed number cannot always be
obtained for the perceived payoff but should be expected to
fluctuate around an average value. But even in sociophysics
this concept is useful, since a common critique of game theory
(and sociophysics) is that the diversity and subjectivity of
the perceived rewards and risks cannot be described by fixed
values of the payoff [6,7]. Therefore a framework that allows
us to explore general aspects of a “fuzzy” payoff environment
could further support the strength of game theory in modeling
real-world scenarios.

Financial trading [43], emergency medicine [44], and even
poker games [45] are just a few examples we can mention
to appreciate the relevance of a heterogeneity in risk and
reward perception in a system. For instance, rational but risky
decisions can be essential to achieve favorable outcomes, and
individuals actually show a variety of behaviors in the above
listed activities. The generality of these considerations makes
the payoff values suitable for being considered as stochastic
variables instead as fixed values (as per the classic EGT
approach).

One way to study the influence of such random varia-
tions is to represent each different environmental condition
as a new factor in the equations of a model. Following
this method, many authors have made important advances in
the understanding of how a number of conditions can drive
the system dynamics, such as resource heterogeneity [46],
different behaviors [47,48], seasonal variations [33], diverse
learning rates [49], different death rates [50], interaction
topologies [51], and so on. However, another way to under-
stand these phenomena is to study the behavior of a population
whose evolution can be affected by a payoff matrix constantly
perturbed by stochastic noise with zero mean value [52–54],
regardless of its origin. In other words, as the environmental
perturbations are very diverse and frequent, we can suppose
that the sum of infinitely many small perturbations acts as a
stochastic perturbation around an average value. Indeed, the
central limit theorem indicates that the sum of all these un-
correlated perturbations would probably behave as a Gaussian

noise. In this scenario, we are not interested in every single
source of perturbation, but rather, in their collective effect.

We deem it relevant to mention previous seminal works,
such as [55–59], that (to the best of our knowledge) first stud-
ied such disorder in EGT. More recently, the effect of payoff
noise on phase transitions has been the core of much research
that has shed light on how different types of perturbations
can lead to the emergence of cooperation [8,27,33,52,53,60–
66]. So, here, starting from the model proposed in [8], which
introduces payoff perturbation in the context of the imitation
update rule for all payoff entries, we perform a full analysis
under different settings, and then we study the microscopical
mechanism that leads to the observed macroscopic results.

After introducing the proposed model in Sec. II, we show
the results of numerical simulations (i.e., Sec. III) and, eventu-
ally, in Sec. IV we discuss the main findings and their possible
implications.

II. MODEL

For the sake of simplicity, we consider two-strategy games
where players can either cooperate (C) or defect (D). Mutual
cooperation yields a payoff R (reward), and mutual defection
yields P (punishment). A defector receives a payoff equal
to T (temptation) when interacting with a cooperator that in
turn receives a payoff equal to S (which usually stands for
sucker’s payoff). We then introduce the effects of small payoff
perturbations, say ε, randomly occurring on the off-diagonal
elements of the payoff interaction matrix. As a result, the
payoff matrix of any two-player interaction can be written as
follows:

C D

C

D

[
R S + εS

T + εT P

]
,

(1)

where T ∈ [0, 2] and S ∈ [−1, 1]. Without loss of general-
ity, we set R = 1 and P = 0. A similar approach was also
introduced in [56]. It is worth clarifying that εT and εS are
independent random variables with zero average value (ε̄ =
0), drawn from a uniform distribution unless stated otherwise.
At each new player interaction, the fluctuation is randomly
drawn again, meaning that the noise is not cumulative nor
fixed in time or space. This is similar to the annealed disorder
case of condensed matter physics [64,67].

Here, the control parameter for the proposed model is the
perturbation strength D, where for a uniform distribution we
set −D < εT < D and −D < εS < D. It is useful to remark
that this payoff matrix parametrization spans four different
classes of games in the {T, S} parameter space: prisoner’s
dilemma (PD), snowdrift (SD), stag hunt (SH), and harmony
games (HG) [21,51]—see Fig. 1. We emphasize that even
if the average value of the perturbation is zero, it can be
able to (locally) change the game class to a more friendly or
more competitive environment from time to time. However,
in the long run, there should be, on average, no unilateral
contribution to either.

Before moving to further details, let us briefly emphasize
that game theory offers a wide set of games, each one devised
to represent a specific scenario. As we can see from the payoff

062309-2



STRATEGY EQUILIBRIUM IN DILEMMA GAMES WITH … PHYSICAL REVIEW E 101, 062309 (2020)

0 0.5 1 1.5 2

T

-1

-0.5

0

0.5

1
S

HG SD

PDSH

ε
T

ε
S

(T,S)

FIG. 1. T × S parameter space with R = 1, P = 0, spanning four
classes of games: prisoner’s dilemma (PD), snowdrift (SD), stag
hunt (SH), and harmony games (HG). The payoff fluctuation acts
over T and S simultaneously and uncorrelated by means of the
two independent small random variables, εT and εS . Note that local
fluctuations can lead players to play different classes of games
depending on the fluctuation strength.

matrix, HG and PD are at the antipodes. In the former, the
sucker’s and temptation payoff have an overlapping range, so
HG has a much higher probability to present cooperation than
PD. This reflects the fact that, in the original scenario, two PD
players have a tendency to betray each other, and cooperation
only results from a substantial risk they would both have to
take. On the other hand, SH represents a conflict between
safety and social cooperation, while SD, also known as game
of chicken or hawk-dove, represents a form of competition
where one player succeeds as soon as the opponent gives up
(e.g., because of the risk of playing the game itself).

A general core aspect of evolutionary games is given by
the strategy update dynamics. We can understand it as a two-
step process where: (1) players interact with their neighbors
accumulating a payoff, then (2) they may change strategy
according to an update rule. Such rules can be defined by
taking into account different aspects of any given system.
Here we consider the usual imitative rule [51], the Ising (or
Glauber dynamics) rule [68], and the dynamic win-stay–lose-
shift (WSLS) rule [69]. This is done so we can study the
robustness of the effects created by payoff perturbation, since
previous works have extensively shown how the update rules
can lead to different behaviors [22,34,35,47,70,71].

We first present the most usual update rule, the imitative
dynamic. Accordingly, one player, say i, updates its strategy
by comparing its payoff with that of one randomly chosen
neighbor, say j. Player i adopts the strategy of player j with
probability

p(�ui j ) = 1

1 + e−(u j−ui )/k
, (2)

where k is the irrationality level in the decision process [51]
(similar to the temperature in statistical physics), while ui and
u j represent player i’s and j’s payoff. We use k = 0.1 for

all simulations unless stated otherwise. The imitation rule is
a noninnovative dynamic [10,51], because a player can only
change its strategy by selecting among those available in the
population. This is one of the most explored rules in EGT,
and it is associated with the replicator dynamics observed in
biological evolution [9]. Because of the extensive research on
this setup, we will focus our analysis mainly on this model.

We present next the so-called Ising rule (also known as
Glauber dynamics [72]), where players change strategy with
probability

p(�ui ) = 1

1 + e−(u∗
i −ui )/k

, (3)

with ui player i’s payoff, and u∗
i its potential payoff at a next

iteration if it changed strategy while everything else (i.e., the
strategy set of its neighborhood) remained the same. Recently,
the Ising rule has been studied in [35,68,73], showing that it
leads to very different dynamics when compared to imitation
models. In mathematical terms, this setting is equivalent to
a Monte Carlo protocol used in condensed matter physics to
generate ensembles of spin systems that are based on Ising or
more general Heisenberg Hamiltonians [74]. In the context of
EGT, this update rule is regarded as a player asking himself
what would be the benefits of changing its strategy to a
different one. This is closely related to rational analysis of a
situation (see also [75] on this topic) instead of a reproduction
of the “fittest” behavior.

Lastly, we also implement the win-stay–lose-shift up-
date rule with dynamic aspiration [69]. The WSLS strategy
relies on cognitive capabilities instead of replicating pro-
cess [76–79]. In this case, players change strategy depending
on the degree of satisfaction with their current payoff in
comparison to the average payoff of their neighborhood. The
probability of a chosen player to change its strategy to the
opposite one is given by

p(�ui ) = 1

1 + e−(ū−ui )/k
, (4)

where ū is the average payoff of player i’s neighborhood.
To implement such dynamics we use an asynchronous

Monte Carlo protocol so that a random player, say the ith, is
selected and its cumulative payoff, as well as those of its first-
and second-degree neighbors, are calculated. Then the ith
player can change its strategy according to the defined update
rule. One Monte Carlo step (MCS) consists of this process
being repeated until each player has had the opportunity to
change its strategy (that is, N times). So, we wait for the
system to reach a dynamic equilibrium (around 104 MCSs),
and then we average the values over the final 1000 steps. This
is repeated for 50–100 different samples with the same pa-
rameters. A square lattice, with von Neumann neighborhood
and periodic boundary conditions with N = 104 individuals,
is the background for our simulations. A detailed discussion
on Monte Carlo methods in evolutionary dynamics is provided
in [51,80].

III. RESULTS

In this section we show the results of numerical simulations
of the proposed model. For the sake of clarity, irrelevant error
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FIG. 2. Average evolution of cooperation, ρ(t ), for 100 samples
using the imitative update rule. We set Tc = 1.04 in (a), the critical
extinction point for cooperation. Even when the noise is around 10%
of the T value, cooperation can reemerge. (b) A similar analysis for
T = 0.96. Notice that the x axis is logarithmic.

bars are hidden. Figure 2(a) presents the average cooperation
fraction ρ(t ) of a population as time passes, considering the
imitative rule. Also, it shows the evolution of cooperation
for the parameters Tc = 1.04 and S = 0. We note that for
the imitative model with no payoff perturbation, Tc = 1.04
corresponds to the phase transition point where cooperation
becomes extinct. This was chosen to highlight the positive
effect of payoff perturbation, since its strongest effect happens
near the phase transition boundary. Remarkably, adding a
perturbation as low as D = 0.05 can prevent said extinction,
and for D = 0.2, cooperation can increase even up to 40%. We
note that this increase in cooperation also happens for a wide
range of T values. Qualitatively similar results were obtained
for the Ising and WSLS update rule regarding the temporal
evolution of the population.

The analysis of the temporal evolution indicates that the
noise almost immediately affects the cooperative behavior.
Using the definitions of Tanimoto [64], we can observe that
the “endurance” phase (where cooperation initially falls) is
drastically affected. Notably, even for MCS < 20, the noise
enhances cooperation, preventing its extinction. The “expand-
ing” phase is therefore reached for very short times, allowing

cooperation to flourish. Also note that Fig. 2(b) presents the
average temporal behavior for T = 0.96. We observe that
the perturbation can be detrimental to cooperation if T < 1,
that is, for more fraternal games. Note, however, that this
detrimental effect is weaker than the positive effect when
T > 1.

Next we focus on the final equilibrium fraction of cooper-
ators ρ for the whole range of T . For simplicity, we present
results for the weak prisoner’s dilemma configuration (i.e.,
S = 0). We ran simulations for different S values, and the
general trends are maintained. Figure 3 presents the outcomes
achieved by using the uniform noise distribution in all consid-
ered update rules (i.e., imitative, WSLS, and Ising). Its inset
shows (ρ − ρ0), where ρ0 is the cooperation value for the
case D = 0. This is especially useful to compare the effects
of the payoff perturbation with the unperturbed case, filtering
off the effects of varying T . It is interesting to note that
there is a general trend in all models, i.e., the noise increases
cooperation in the PD region (T > 1), and such enhancement
grows with the noise amplitude D. We stress here how the
three update rules have very different dynamics and that even
so, the general effect of the payoff noise was maintained in
all three cases. The inset allows understanding the level of
enhancement caused solely by the noise. In particular, the
imitative and WSLS rules present a clear peak that grows
with D while maintaining its position (relative to T ) regardless
of the noise level. It is also very interesting to note that
this peak happens in Tc = 1.04 for the imitative model, and
after that the positive effect begins to decline. This again
reinforces that the benefit of payoff perturbation is most strong
near the phase transition, although it is not restricted only
to this region. At the same time, for T < 1, the noise can
dampen cooperation in different manners for each case. Using
the imitative updating rule, the related drop is very shallow
(15%) and almost independent of D. That is similar to results
achieved by using the WSLS rule. On the other hand, the
Ising rule presents a strong drop in (ρ − ρ0), which is very
dependent on D.

Note that there is also another interesting characteristic
shared by all three models; in general, there is some specific
value of T where all lines cross (in the imitative model this
effect is less strong but still visible for D < 0.5). For the
imitative and Ising models, this point is T = 1, while for the
WSLS the point occurs near T � 0.58.

Considering the parameter space, Fig. 1, we see that the
point T = 1, S = 0 is singular since it is exactly the most
symmetrical setting concerning the four classes of game. For
a rational update rule and an infinite well-mixed population,
we can see that the cooperative and defective strategies are
identical in terms of payoff (it becomes irrelevant for the
player which strategy to chose). As our perturbations are also
symmetric, there cannot be any incentive to one strategy or
the other, since they are identical. Therefore, perturbations
should not change the final state of the system compared
to the unperturbed setting, independent of the perturbation
strength D. This argument takes into account only the payoff
matrix and supposes an infinite and well-mixed population.
In a spatially distributed model with finite population (and
using a Fermi distribution), certain correlations can arise that
will change said symmetry. Nevertheless, we see that for the
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FIG. 3. Average final cooperation level (ρ) as a function of T
for the imitative (a), WSLS (b), and Ising (c) models using the
uniform noise distribution. The inset shows ρ − ρ0, where ρ0 is the
cooperation value for the case D = 0.

imitative and Ising model, the point remains near T = 1 to a
high precision. At the same time, the WSLS model does not
present this feature for T = 1, but even so, we can see a very
similar behavior in T near 0.58.

To observe how general the perturbation effect can be,
we also analyzed a similar setting but with a Gaussian dis-
tribution instead of a uniform one. In this case we set our
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FIG. 4. Average final cooperation level as a function of T for
the imitative model comparing the uniform (continuous lines) and
Gaussian (dashed lines) distribution. The sets are arranged in pairs
with the same D value for the same colors. Higher D values lead
to higher survival of the cooperation in the x axis. In the uniform
distribution D is the range of the perturbation, while in the normal
distribution it is the standard deviation.

control parameter as D = σ (i.e., the standard deviation of the
distribution). Let us stress that we cannot directly compare
the control parameter D for both cases, since in the uniform
distribution, D is the range of the distribution, whereas in
the Gaussian case, D is the standard deviation. Even so, D
relates to the perturbation strength in both scenarios. The
results are very similar for the three update rules but with
minor quantitative differences, the general difference being
that for Gaussian distributions, cooperation is more enhanced
than for uniform ones given the same value of D. This can be
credited to the fact that in a Gaussian distribution with σ = D,
although most perturbations will be equal to or smaller than
D, there will be rare stronger perturbations occasionally. This,
in turn, translates to a more noisy system that can strongly
enhance cooperation.

In Fig. 4 we present a comparison between the uniform
and Gaussian distributions using the imitative update rule. For
the sake of clarity, we present only D = 0.1; 0.2 ; 0.5, but the
effect was similar for all ranges of D ∈ [0, 1]. As expected
(assuming the same control parameter D for both cases), the
Gaussian distribution has a more pronounced effect. This
suggests that the cooperation enhancement stems from rare
and influential fluctuations that are more common in the
Gaussian distribution. This is in accordance with a similar
hypothesis presented in [55–57].

Considering the imitative rule, we varied the noise level D
for different T values. Results are presented in Fig. 5. The per-
turbation has a positive and continuous effect on the cooper-
ation in regions where T > 1 and a (small) detrimental effect
if T < 1. Specifically, the strongest cooperation enhancement
happens exactly at the phase transition (Tc = 1.04). We see
that payoff perturbation enhances cooperation for egotistic
games (T > 1), while it can dampen said cooperation for
fraternal games (T < 1).

Note that for the unperturbed model, cooperation is extinct
for T > 1.04. However, the resurrection of cooperation after
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FIG. 5. Average final cooperation level as a function of perturba-
tion strength D for different values of T . Black circles represent the
critical point Tc = 1.04, were the perturbation effect is stronger.

this critical point is possible given strong enough perturba-
tions. Figure 6 presents the results for the cooperation as a
function of D for some cases of T > Tc. As we can clearly
see, there is the separation between an “active” phase with
strategy coexistence and a phase where even with perturbation
only defectors dominate. The threshold value of D allowing
the existence of cooperation, Dcrit , is shown in the figure inset
as a function of T . We can see that it behaves mostly linearly
with T , having an angular coefficient of � 3.5(5).

To understand whether the cooperation boost is caused
by any kind of random fluctuation, we compare the effects
of payoff perturbation with the noise generated by high
irrationality values, k, [75,81]. As demonstrated by Szabó
et al. [82], irrationality can have beneficial effects on the
maintenance of cooperation for some parameter regions. Nev-
ertheless, this is not a linear effect, and there is an “optimal”
irrationality level after which the system starts to behave
randomly, destroying cooperation. Figure 7 illustrates the final
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FIG. 6. Average final cooperation level as a function of pertur-
bation strength D for values of T > Tc, where cooperation is always
extinct in the unperturbed model. The inset presents the critical value
of D, as a function of T , that allows cooperation to reemerge after Tc.
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FIG. 7. Average final cooperation level as a function of irra-
tionality k in the phase transition T = 1.04 for the imitative model.
As expected, there is an optimal irrationality level for D = 0. Even
so, payoff fluctuations always increase cooperation for the whole
range of explored k values.

average cooperation level as a function of irrationality k for
different payoff perturbation strengths. We see that the payoff
perturbation boosts cooperation regardless of the irrationality
level. Even more, we see that the cooperation enhancement
granted by intermediate levels of irrationality is additive with
the beneficial effect of the payoff perturbation (more strongly
present in the region 0.15 < k < 0.6). We used T = 1.04 for
the figure, but this effect remained similar for different T
values and different update rules in our simulations.

We proceed to analyze which microscopic mechanism is
responsible for the cooperation enhancement due to payoff
perturbation. It is worth noting that lattice snapshots were
not useful in this regard in all three update rule settings. The
population has the same general spatial distribution with and
without perturbation, i.e., in both cases, cooperators form the
usual clusters surrounded by a sea of defectors, the main
difference being only that the total fraction of cooperators
is greater as we include perturbations. While this does not
present the cause of the cooperation enhancement, we see that
it is not directly related to a strong spatial distribution effect.

We stress that while the perturbations have zero average
value, they can locally change the game class being played
at each round. Based on this fact, we analyze how players
(locally) fluctuate to a more fraternal or egotistic game. To
do so, we define for each player, at each Monte Carlo step,
the variable φ = εS − εT . If φ > 0 (φ < 0), the game being
played at a given time will be more fraternal (egotistic). Note
that for every player, φ̄ = 0 for long times. Next, we obtain at
each time step the population fraction of cooperators and de-
fectors that had φ > 0 in the previous round (named fraternal
cooperators, CF , and fraternal defectors, DF ). We do the same
for cooperators and defectors with φ < 0 (named egotistic
cooperators, CE , and egotistic defectors, DE ). By doing so,
we can understand if players’ strategies are correlated with φ

even if ε is randomly drawn at every interaction.
Figure 8 presents the average evolution of the four sub-

populations for the imitative model in the region where the
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FIG. 8. Average fraction of each subpopulation over 100 Monte
Carlos runs. Here we used D = 0.3 and T = 1.04, where cooper-
ation would be extinct if not for the payoff perturbation. Fraternal
cooperators (CF ) quickly dominate the population, being followed by
egotistic defectors (DE ), fraternal defectors (DF ), and lastly, egotistic
cooperators (CE ).

perturbation has its strongest effect, i.e., Tc = 1.04. The main
effect of payoff perturbation is to separate the subpopulations
of players who play, on average, more fraternal or egotistic
games. Specifically, fraternal cooperators (CF ) grow more
than any other subpopulation, being followed by the egotistic
defectors (DE ). It is important to note, however, that even if
the perturbations are symmetric, CF > DE .

To further explore this, we obtained the fraction of all
subpopulations for different T values. The results are shown
in Fig. 9. In it we can see that this effect happens for all
the relevant T range. On average, sites that have fluctua-
tions leading to φ > 0 will tend to become cooperators with
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FIG. 9. Average final fraction of each subpopulation (lines) as
we vary T . Here we used D = 0.3. Symbols present the average
normalized fraction of cooperators that are fraternal, i.e., CF /ρ, and
the average fraction of defectors that are egotistic, i.e., DE/(1 − ρ ).
Sites that play more fraternal games on average will tend to become
cooperators at a higher frequency then egotistic sites will become
defectors.
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FIG. 10. Average final fraction of each subpopulation (lines) as
we vary D. Here we used T = 1.04. The inset shows the difference
of the average, fraternal, and egotistic subpopulations (CF − CE ) as
well as (DE − DF ).

a higher frequency than sites that had φ < 0 will become
defectors. Note that the symbols in Fig. 9 present the (nor-
malized) fraction of cooperators that are fraternal, i.e., CF /ρ

[and the normalized fraction of defectors that are egotistic,
i.e., DE/(1 − ρ)]. This is especially important, since as T
increases, the total fraction of cooperators decreases, but
even so, CF /ρ > DE/(1 − ρ). In other words, even if total
cooperation decreases, the perturbation still induces a flux of
cooperators to sites where more fraternal games were played.
This, in turn, sustains cooperation for greater ranges of T .

This analysis was also performed for different perturbation
strength values (D) to observe how it can affect the subpop-
ulations. The results are shown in Fig. 10. As expected, the
increase in both subpopulations of cooperators is monotonous
with D. The inset shows the difference (CF − CE ) as well as
(DE − DF ). In it we can see that even if a stronger pertur-
bation can lead to a higher value of (DE − DF ), this value
is always lower than (CF − CE ). In other words, agents who
play more fraternal games on average will have a greater
probability of becoming cooperators. On the other hand, the
opposite is not true for players that have played, on average,
more egotistic games, as their average fraction will be smaller
than that of the cooperators. This is the main mechanism
behind cooperation enhancement. Simulations for the WSLS
and Ising update rules remained similar with small quantita-
tive differences, showing how robust this phenomenon is.

Let us summarize the main mechanism that can increase
cooperation in the proposed model; while players have sym-
metrical perturbations, defectors locally benefit from a more
egotistic game but cannot maintain said benefit as their clus-
ters do not obtain benefits from the perturbation (P is not
perturbed). At the same time, cooperators can form spatial
structures that are more robust against negative perturbations,
heaping the long-term benefits of positive perturbations. In
other words, cooperators are able to form positive feedback
loops with the local positive payoff fluctuations, while defec-
tors cannot. This effect is very similar to what was observed
in [23,83], where a very similar positive feedback loop helps
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FIG. 11. T × S parameter space for all studied update rules using a high perturbation strength D = 0.5. The final cooperation fraction is
represented in color in the top row, (a)–(c). The bottom row, (d)–(f), represents the difference (ρ − ρ0), i.e., the change in cooperation due to
perturbation. Dark red represents a negative effect and light blue a positive one. Each column relates to one update model: imitative in (a) and
(d), Ising in (b) and (e), and WSLS in (c) and (f). We see that the most general effect of perturbations is to increase cooperation in selfish games
while lowering it in altruistic ones. The effects span most of the parameter space but are particularly strong near phase transitions.

the promotion of cooperation for the so-called multigames.
Indeed, this seems to be a general property of evolutionary
games, i.e., cooperators can benefit from a variety of fluctua-
tions using positive feedback loops whereas defectors cannot.

To conclude, we present the final average cooperation level
for the whole parameter space T × S considering all update
rules in Fig. 11. Each update rule is depicted in one column,
with the imitative in (a) and (d), Ising in (b) and (e), and
WSLS in (c) and (f). The top row depicts the final cooperation
fraction in Figs. 11(a)–11(c). The bottom row, Figs. 11(d)–
11(f), represents the difference (ρ − ρ0), i.e., the change in
cooperation due to perturbation. For all figures, we report
the case for a high perturbation (D = 0.5). We note that the
parameter space for the unperturbed case can be found in
the literature in [69] for the win-stay–lose-shift, in [68] for
the Ising model, and in [84] for the imitative model.

This analysis indicates that the perturbation changes the
population dynamics more strongly near phase transition
regions, although it is not restricted only to this region of
the parameter space. By using all three updating rules, we
can observe the general effect that perturbation increases
cooperation in the direction of more selfish games (i.e., high
T , low S), while it does the opposite for altruistic games. We
also note that the detrimental effect on cooperation is usually
lower than the benefit for regions with high T and a low
S. We deem it especially interesting that by using the Ising
rule, see Figs. 11(b) and 11(e), the perturbation increases the

anticoordination area linearly with the perturbation strength
(top right region of the T × S parameter space).

IV. CONCLUSIONS

In this work, we studied payoff perturbations considering
simple social dilemmas, with the main goal to clarify and
quantify their effects when only the off-diagonal is interested,
following the results reported in [8]. Beyond analyzing per-
turbative methods in evolutionary games, the proposed model
has the potential to actively contribute to a vivid debate, i.e.,
that on the relationship between heterogeneity and coopera-
tion. We emphasize that the form of heterogeneity we consider
is related to that of risk and reward perception, i.e., an aspect
covering a fundamental role in many social systems and that
might also be relevant, using a different interpretation, in other
contexts.

Then, while [8] focused on a general range of effects
resulting from perturbed payoffs, here we concentrate on the
strategy equilibrium reached by a population in the presence
of perturbations acting only on the rewards of betraying and
the risks involved in getting betrayed (i.e., the temptation and
the sucker’s payoff). Hence, cooperators playing with coop-
erators, and defectors playing with defectors, are not affected
by perturbations. In addition, here we analyze a wider range
of game parameters, i.e., near and far phase transition points,
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in order to identify those values that allow perturbations to
actively affect the dynamics of the game.

The evolution of strategies has been studied by Monte
Carlo simulations, arranging players on a square lattice with
periodic boundary conditions. To verify if the observed effects
were robust in different settings, we considered three different
update rules—imitation, win-stay–lose-shift, and Ising. We
also analyzed the effects of Gaussian and uniform noise
distributions.

Results show that perturbations can have more pronounced
effects on the population dynamics, mainly near the phase
transitions. Even so, such perturbations can have effects on
games far away from the phase transition region, although
generating a weaker effect. Notably, the average evolution of
a population showed that the perturbations act very quickly,
affecting mainly the initial evolution. Also, this effect is
proportional to the perturbation amplitude when T > 1. At the
same time, the dampening in cooperation observed for T < 1
seems to be very small in comparison. In addition, the overall
effect of the perturbation seems to be independent of the
specific choice of the update rule, highlighting its robustness.
Then the analysis related to the combined effect of hetero-
geneity and irrationality showed that these two perturbation
sources are quite independent of each other.

In order to understand the microscopic mechanism respon-
sible for the cooperation enhancement near phase transitions,
we studied the subpopulation of cooperators and defectors
that, locally, played more fraternal or egotistic games at each
time step. This is in line with previous works which proposed
that the benefit of diversity would be related to the random
changes in the game class (prisoner’s dilemma changing to
stag hunt or snowdrift) [55–57]. This approach allowed us to
unveil what was responsible for the general effect observed in
all cases. On average, we found that the payoff perturbation
offers no unilateral contribution for more egotistic fraternal
games. Even so, it can locally promote cooperation for players
that had a more positive perturbation. This effect can lead to
the formation of stronger cooperative clusters, while defectors
cannot benefit from said phenomena in the long run, as they do

not benefit from mutual support (see also [63]). On the other
hand, in [58] authors presented arguments on the irrelevance
of game class changes for some contexts. While this seems to
be an open topic, our initial results indicate that the random
fluctuations have deep effects on the phase transitions of
the model, being able to improve cooperation thanks to the
unusual states found near phase transition points.

Summarizing, our main finding is that off-diagonal pertur-
bations cannot be considered as a trivial form of noise, as
they seem to selectively enhance cooperation when defection
is pervading the population, while they are able to support
defection as the population begins to cooperate. Therefore,
in our view the proposed model offers interesting insights
on a relevant aspect of heterogeneity, not limited only to
the study of social phenomena. Notwithstanding, since sev-
eral details might deserve further attention, we report those
we consider potentially more interesting. For instance, the
proposed model could be analyzed considering populations
arranged on complex networks [85,86], social behaviors like
conformism [87–89] could be combined with random pertur-
bations, and as suggested in [60], also some clinical inves-
tigations could find it useful to represent specific biological
phenomena by the proposed method.

Finally, we see as especially interesting the connection of
the payoff perturbation with recent works connecting evolu-
tionary game theory with the Hamiltonian description of phys-
ical systems [84,90]. These effects could be further studied in
light of temporal Griffiths phases [67,91]. Such an exotic state
is known to appear near phase transitions in epidemiological
and magnetic systems with a directed percolation universality
class, which is the same phase transition as the imitative
model [51].
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